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Chapter 1

Real number

1.1 Field Properties

1. +

e Communitive: Vx,y e R.a +y=y+=x
* Associative: Vz,y,z €R. (x +y) +z=x+ (y + 2)

Identity: 0 e R.Vx e R. 2+ 0 =2
+ Additive inverse: V e R.3—z e R. z + (—2) =0

« Communitive
» Associative
Identity: 1 # 0

Multiplicative inverse: 32! = 1. z-

=1.

8|~

« Distributive law: Va,b,c € R. a- (b+ ¢) = ab + ac
Theorem 1.1.1. Ifa+xz =athenx =0

Proof. Add —a to both side:

—ata+r=—-a+a
(—a+a)+z=(—a+a)
O+z=0

z=0

Theorem 1.1.2. Ifa+ 2z =0thenz = —a
Proof.

Jd-aeR. (—a+a)+x=-a+0
O+z=—a

r = —a
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Theorem 1.1.3. Va e R.a-0=10
Proof. Consider

a+a-0=a-1+a-0
=a-(1+0)
=a-1
=a =a-0=0

Theorem 1.1.4. Va € R. (—1)a = —a
Proof. Consider

a+ (-l)a=a-1+4a(-1)
= a(1+(-1)
—a-0

By theorem 1.1.2

1.2 Order

A relation < on R x R satisfying

1. Trichotomy: Va.b € R. one and only one is true:

a=b,a<b b<a

2. Transitivity: Va,b,c € R.,ifa <band b < cthen a < c.
3. Addictive property: Va,b,c € R.,ifa <bthena+c<b+ec.
4. Multiplicative property: Va, b, c € R.

(i) if a < band ¢ > 0 then ac < be

(i) if a < band ¢ < 0 then ac > bc
Theorem 1.2.1. Va € R\ {0}.a® >0
Proof. Since a # 0, by Trichotomy, a > 0 or a < 0.
* Ifa > 0, then by Mp;), a> >a-0=0,a* >0

. Ifa<0,thenbyMp(ii),a2>a~0:0,a2>0
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Theorem 1.2.2. Ifa > Othena™' =1 >0
Proof. a=' #0.
(i) Ifea~! =0thena-a~!' =0, contradiction.
(i) Ifa=! <0, by Mpis

al-a<0
1<0

contradiction.
So by Trichotomy, a~! > 0. O
Theorem 1.2.3. If0 < a < 1, then0 <a® <a <1
Proof. By Mp;

O-a<a-a<a-1

0<a’*<a
O
Definition 1.2.1 (Square root). For a > 0 there is \/a > 0 such that (v/a)?> = a
Theorem 1.24. f0<a<1lthen0<a < a<1
Proof. First prove \/a < 1
(@) If \/a > 1then \/a > 0. By Mp;), (va)* > /a > 1, a > 1, contradiction.
(i) If /a = 1 then a = (y/a)? = 1, contradiction.
By Trichotomy, 0 < v/a < 1. By Mp;
0-va<va Va<va-1l
0<a<+a<l
O

Theorem 1.2.5. If 0 < a < band 0 < ¢ < d then ac < bd
Proof.
* Whena =0o0rc=0,ac=0.And 0 < band 0 < dsoby Mp, 0 < bd, so ac < bd.

* Now consider 0 < a < band 0 < ¢ < d. By Mp(;), 0 < ac < becand 0 < bc < bd. By transitivity, ac < bd.

O
Theorem 1.2.6. Ifa > 1 thena > \/a>1
Proof.
1
0<-<x1
a
1 1
O<<\/7<1
a a
a>+a>1
O

Theorem 1.2.7. a,b > 0 then \/a, Vb > 0, then (v/a — v/b)? > 0
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1.3 Absolute Value Function
o] = zr x>0
)2z 2<0
Note. if x <0, by Mp(;, (—1)z >0, —x > 0.
Theorem 1.3.1. |a| = |—a]

Proof. By Trichotomy

(1) a>0:]a] =a,and —a <0, |—a| =a

Theorem 1.3.2. |ab| = |a] |b|

Theorem 1.3.3 (Fundamental Theorem Of Absolute Values). |a| < M <— —-M <a< M

Proof.
1. Assume |a| < M, to prove that — M < a < M.
« ifa>0,then|a] =0a,0<a< M.Since0 <M, —-M <0, —-M <a< M.
«ifa<0,thenja|=-a,0<—a<M,M>0>a>-M,s0—-M <a< M.
2. Assume —M < a < M, to prove that |a| < M.
« ifa > 0then |a| =a < M.
« ifa < 0 then |a| = —a. Since M > —a > —M, M > |al.

Theorem 1.3.4 (1st Triangle Inequality). |a + b| < |a| + |b]
Proof.
la| <
—lal <a <lal
o < o]
— bl <o <ol
—la] =10 <a+b<]a| + b
la+ 0] < [a] + |b]

Theorem 1.3.5 (2nd Triangle Inequality). ||a| — |b]| < |a —b]
Proof.
la| =la—b+b| <|a—0b|+ b
la] = [b] < |a —b|
b = b —a+al <|b—al +a|
—[b—al <la| —[0]
lla] = [b]] < |a — b|

Theorem 1.3.6. If |a| < e for e > O thena =0

la]

Proof. Suppose |a| > 0. set e = 5 > 0, then |a| > e. Contradiction. So |a| =0, a = 0.
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1.4 Supremum and Infimum

Let ECR,E # @.

Definition 1.4.1 (Bounded above). M € R.Vx € E. x < M. M is the upper bound.

Definition 1.4.2 (Supremum).
(i) Vre E.x <supFE
(i) If M is a upper bound of E, then sup E < M (Or, no M < sup F is an upperbound)

Definition 1.4.3 (Bounded below). IM € R.Vx € E. z > M. M is the lower bound.

Definition 1.4.4 (Infimum).
() Vxe E.x > infE
(i) If M is a lower bound of E, then inf E > M

Ex14.1. E=[0,1]={z|0<z<1},supEF=1,inf E=0
Ex1.42. E=(0,1)={z|0<z<1},supE=1inf E=0

Proof. Show if M < 1 then it’s not an upper bound, therefore all upperbound of F greater or equal to 1. If

1 < M < 1then

M+M<M+1<1+1:
2 2 2

M = 1

We have % € E, % > M, M is not an upper bound. Therefore all upper bounds M must be > 1. So,
by def, sup £ = 1. O

Theorem 1.4.1. If s=sup E and r =sup FE then s = r

Proof. s < all upper bounds, r is an upper bound, s < r. r < all upper bounds, s is an upper bound, r < s.
Therefore, by Trichotomy, s = r. O

Theorem 1.4.2. If a € E, and a is an upperbound for E then sup E = a.

Proof. a satisfies (i) for being a sup. Since a € E. If M is a upperbound of E, a < M. a satisfies (ii) for
being a sup. So a = sup E. O

Definition 1.4.5. M is not an upperbound for E means 3z € E. x > M.

Theorem 1.4.3. For E, sup E exists, € > 0.
supEl —e<supE
So sup E — ¢ is not an upperbound, meaning 3x € E. supFE — e < z < sup E.

Ex 1.4.3. Let A be an nonempty, bounded set, ¢ > 0. B = {x = ca,a € A}. Prove that sup B =c-sup A
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Proof. By compeleteness, sup A exists. Vo € B.,3a € A. x = c-a. Since a < sup A we have x = ca < ¢-sup A.
So ¢ - sup A is an upperbound of B. By compeleteness, sup B exists. Follows that sup B < c - sup A. Now,
since sup B is an upperbound of B,

Ve B.x <supB
VYa € A. ca <sup B
0 < sup B

c

So 5228 js an upperbound for A, entails

sup B
c (&

> sup A, namely sup B > ¢-sup A. SosupB =c-sup A. O

Ex 1.4.4. Let A, B be nonempty, bounded sets. What is sup(A — B)

sup(A — B) = sup(4 + (—B))
— sup(4) + sup(~ B)
= sup(A4) — inf(B)

1.5 Completeness

Definition 1.5.1. If E C R, F # @ and E is bounded above then sup F exists. (is a real number)

Ex 1.5.1. For rational number:

EZ{%EQ|%<W},SUPE=W¢Q

So Q is not complete.

Definition 1.5.2 (supZ). if E C Z C R, and sup F exists, then sup E C E.

1.6 Archimedean Principle (AP)

Definition 1.6.1. For all a,b € R, a > 0, thereisan N C Ns.t. Na > b.

Proof.
1. Ifa>b,then N =1

2. If a < b then let
E={keN|ka<b}

Sincea <b,k=1¢€ E,so Fisnotempty, k € E =k < g, g is an upper bound of E. By Completeness,
sup F exists. Calln = supE. By supZ, n € E. Now n + 1 is not in F, therefore (n + 1)a > b. Set
N=n+1.

O
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1.7 Density of Q in R

Definition 1.7.1 (Density). Va,b e R.a <b,Ir € Q. a <r < b.

Proof. By A.P. then there isan N C Ns.t. & < b—a. Let
k
E= {k: €Z|-< a}
n
E is nonempty, bounded above by Na. By Completeness, sup E exists. By supZ, supE € E. Setn = sup E,

then
n+l1¢FE

n+1
>a

n+1
n

<a<

313

1
:E+7<a+b—a:b
non

n—+1
a< <b
n

letr:%e(@.

1.8 Reflection

Definition 1.8.1 (—E). EC R. Let —E={a|a=—x,x € E}.

Theorem 1.8.1. If sup F exists, then inf(—F) exists, and equals to —sup E.

Proof. Since sup F exists,
Vee F.x <supF

Vee E. —x>—supFE
Va€e —F.a> —supF

So —sup F is a lower bound for —E.
Vae —FE.a>M
Vae —F. —a<-M

VeeFE. x<-M

Therefore sup & < —M, —sup E > M.

1.9 Monotonicity
Theorem 1.9.1. If A C B, A # @, sup B exists, then sup A < sup B.
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Proof. If a € A C Bthena € B, a < sup B. sup B is an upperbound for A. By Completeness sup A exists

and sup A < sup B. O

Theorem 1.9.2. If A C B, A # @, and inf B exists, then inf A > inf B.

Definition 1.9.1 (Sup and Inf of any set). Let £ C R.

* For E # @, If E is not bounded above by any number, then sup E = co. If E is not bounded below by
any number, then inf £ = —cc.

e For E =@, supE = —o0, inf £ = .




Chapter 2

Sequences on R

2.1 Limits of Sequences

Definition 2.1.1 (Limit).

lim 2, =L < Ve>0.dN.n> N — |z, — L| < ¢

n— oo

Theorem 2.1.1. If z,, — L as n — oo then all subsets also converge to L.

Theorem 2.1.2. If z,, — L as n — oo then {x,} is bounded
VneN.IM. |z,| <M

Ex 2.1.1. True or False. If x,, converges then == converges.

Answer. True. lim,, ;o == = 0.

Proof. Consider, since Vn € N. |z, | < M, without lost of generality, M > 0.

|33n| < %
n n

Given € > 0. By AP, 3N € N. so that M < Ne.

~—n N ¢

:L"IL

Vn > M.

Ex 2.1.2. True or False. If x,, does not converge, then %= does not converge.

o — 0asn — oo.

Answer. False. Consider z,, = (—1)". z,, does not converge but
Proof. Given e > 0. By AP, 3N € N. 1 < Ne. For n > N we get

-

_ €
N

S|

Theorem 2.1.3. % —lasn— oo

11
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Proof. Givene > 0. ByA.P,IN € N. 72 < N - €%

AN
[0}
(™)

= EEE

For all n > N we get

'1-+ 1’—- < <
- _ RN €

Theorem 2.1.4. Assume that x,, — 1 as n — oo, then

. TZn —
lim =r1—2
n— o0 Ty

. 1 s 1 : 1 3
Proof. By assumption, take ¢ = 3, there exists N so that Vn > N. |z, — 1| < 3, gives 5 <z, < 3.

MLy — 2 Xy —2  (m—2)z,

~-n)

Tn Tn Tn

By assumption, for any € > 0, |z, — 1] < §

TLy — 2
— —(T=2)| <
o (r-2)| <

Theorem 2.1.5 (Comparison). If x, — x and y,, — y as n — oo and if x, < y, for n > Ny then x < y.

Proof. Suppose not, x > y. For e = 5% > 0, then there is Ny s.t. n > Ny — |z, — 2| < 5% and N; s.t.

Tr—

n> Ny = |y, —y| < F2.

x + xr —
Qy:x— 2y<xn
xr — x +
Yn < 9 Y +y= D) Y

Yn < xT—I-y < &y for n > max(Ny, Na)

Ex 2.1.3. True or False. If z,, — oo as n — oo then - — oc.

Answer. False. z,, = —1

Theorem 2.1.6. If z,, > 0 and x,, > 0 as n — oo then /T, — \/x as n — oo.

Proof. Since x,, > 0 by comparison z > 0.

« If 2 = 0, consider |\/z,, — 0| = \/z, since z, — 0, given € > 0 there is an N so thatn > N —
|z, — 0] < €. 2, < €2, \/Tn, < €, |\/Tn — 0| < e.
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e If z > 0, consider

= ol = (e YtV
- |z, — 2|
C VE VT
|z, — x|
R

Given € > 0 then there is an N s.t.

n>N — |z, — x| < Ve

So
|z, — 2|  e&/z
Ven — V| < —— < =
| n \F| = \/E \/E €
O
Theorem 2.1.7. If x € R then there is a sequence r,, from Q s.t. r,, — x as x — oo.
Proof. For n € N by density of Q there is an r,, € Q with
1 1 1
T——<rp<zr4+-— <= 0<|r, —x| < —
n n n
By squeeze theorem,
|rn —x| > 0asn =00 < r, >xasn—
O

2.2 Increasing and decreasing

Definition 2.2.1 (Increasing). {x,} is increasing means x,, < x,1 for all n € N. If x,, < x,,41 then strictly
increasing.

Definition 2.2.2 (Decreasing). {z, } is decreasing means x,, > xp41 for alln € N. If x,, > x,, 1 then strictly
decreasing.

Theorem 2.2.1 (Monotone Convergence Theorem). If x,, is increasing and bounded above, then x, —
sup {x1,x9,... } as n — oo.

Proof. Given € > 0, there is an z,, € E = {x1, 2, ...} so that
supF —e<x, <supE <supFE +¢
forn> N, zn < z,, SO

supE —e<ay <z, <supE+e < |z, —supF|<e

Ex2.2.1. If0< |a] < 1thena™ - 0asn — o
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Proof. Consider |a™ — 0| = |a|”, to prove |a|” — 0 as n — oo. Here, 0 < |a| < 1, |a|* < |a|. If |a|" < |a|"""

then |a|"*" < |a|"™®. By induction, |a|"*" < |a|” for all n € N. |a|" is decreasing and bounded below by 0.
By MCT, |a|" — L as n — co. Now note that

2n

la|™ = la|" |a|” = L-L=L*asn — oo

But |a|>" is the subseq of every terms of |a|”. By the subsequence theorem,
la|*™ — Lasn — oo
Therefore L? = L, gives that L = 0, 1. Since |a| < 1 and |a|" is decreasing, L = 0. O

Ex 2.2.2. Ifa > 0 then a'/™ — 1 as n — oo
Proof. For a > 1 and n < m,
a® <a™
Take the L root, we get
(a")™ < (™)
aﬁ < a%

1<amt <an
a is decreasing and bounded below by 1. By the MCT, a™ — L as n — co. But

az" = \/E —VL
Therefore L = /L, L? = L, L = 1,2. Since it’s bounded below by 1, L = 1. O
Ex2.23. If0<xz <1, 2yy1 =1—+/1—x, forn €N, prove that x,, converges and find the limit.
Proof. Induct on z,,

Base case.
zg=1—+v1—11

O<xri <1

0>—z; > -1

1>1—21>0

1>V1—23>1—2;>0

“1l<—V1-21<21-1<0
0<1l—VI-x1<m <1

332<£C1<1

Inductive step. Suppose 0 < z,, < 1 repeat the argument with z; replaced by z,,

O0<zpyr <ap <1

By induction the sequence is decreasing and is bounded below by 0. Therefore by MCT it converges. Now
find the L. z,, — L as n — oo.

L=1-V1-1L
Vi—-L=1-1L
1-L=1,0
L=1,0
=L=0
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Ex 2.2.4. 29 > 0and z, = 3 + 2, for n € N. Show x,, converges and find the limit.
Proof.

2—1— <1 +2
=5+ zz ST+ sxo=2
1= 3T 3% < 3% + 3% 0

2 <z <x

If 2 < 2,41 < x, then the same arg gives 2 < 2,5 < z,4+1. By induction, z,, converses and bounded below
by 2. By MCT, z,, — L as n — oo. Now find L.

=~
Il

\CENJUIRNG)
+

Wl o
h

Ex 2.2.5. 7o < 3, z, = 2 + Sx,,_4, prove it converges and find the limit.

Proof.
T —xg+ =20 < +§x $<§+§_3
AL A A A A
1 6 3 6 3 18
xn—7xn+7xn<?+7xn mn+1<7+7:3

Zn is increasing and bounded above. By MCT, z,, — L as n — oo. Taking the limit in

T *§+§z
n*7 7n—l
We get
3 6
L=Z=+-L
7+7
L=3
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Chapter 3

Functions on R

3.1 Limits

Definition 3.1.1. Let I be an open interval, a € I, I = I\ {a}, f : I = R. lim,_,, f(x) = L means

Ve>0.36>0.Ve el (0<|z—a|<d=|f(z)—L| <e)

Ex3.1.1. f(x)=mz+baeR

Answer. lim,_,, f(z) =mz +b

Ex 3.1.2. f(z) = 2% + 2 + 1, prove lim, 5 f(x) = 11

Proof. For |z —2| <1,1 <z <3and |z? 4 2z + 5| < 20. For |z — 2| < 1 we have
|2° + 2 +1—-11| < |o® + 22 + 5| |z — 2| < 20|z — 2|

Given € > 0, let § = min(1, 55). For 0 < |z — 2| < § we get

€

20 ¢

|2® +2+1-11| <20]z — 2| < 20-

Definition 3.1.2 (Sequential Characterization of Limits). Let z,, be sequence from I,

lim f(z) =L < lim 2, =a— lim f(z,) =1L

Tr—a n—oo n=00

Definition 3.1.3 (Polynomial). n € N, a polynomial of defgree N

n
P(J;):a0—|—a1$—|—a2x2—|—...+an$”:Za?kl‘k, aﬂ;é()
k=0

17
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Theorem 3.1.1.
wliglo P(x) = P(xo)
Proof. Recall
lim mz 4+ b=mzy+b

T—xTo
So,
. 2 o . . _ _ 2
lim z° = lim z lim x =220 = 2§
T—To T—TQ T—rTQ
lim z3 = lim z? lim m:xg-xozxg
T—xT0 T—To T—T0

If limg_,,, 2™ = zf then

lim 2" = lim 2" lim 2 = 2§ - 29 = 2"
Tr—xo Tr—x0 Tr—x0

By induction lim,_,,, 2™ = z{ for all n € N. For P,(z) = ap + a1 + - - - + anz™,

lim P,(z) = lim ap+ lim a;z+---+ lim a,a”
Tr—xo T—xTo T—xTo Tr—xTo
=ag+ a1z + -+ apxy

= Pn(xo)

Definition 3.1.4 (Rational Function). P(z) and Q(x) are polynomials with Q(x) # 0, then a rational
function R is
P(z) Yy axa®

Rle) = Qx) — Yo bra®

Theorem 3.1.2.

,  limgp, P(z)  P(x0)
Jm R(z) = lim, 0 Q(z)  Q(a0)’

Theorem 3.1.3. If P(x) and Q(z) are polynomials with deg(P) < deg(Q). Then

lim

P(z) O deg(P) < deg(Q)
Q(x) | anfo, deg(P) = deg(Q)

Proof. Form > n

I (anz™ + -+ ao) ﬁ
T—00 (bm$m+"'+bo)%m
= lim (%'MJF )
T—00 (%‘f"i‘f&)
O+---+0 —0
by +0+---+0
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3.2 Convergence and Divergence

Definition 3.2.1 (Convergence). lim, o, f(z) = L means
Ve >0.3IN.z >N = |f(z) - L|<e

lim,, o f(z) = L means
Ve>0.IN. e < N =|f(z) - L|<e

Definition 3.2.2 (Divergence). lim,_, f(z) = oo means
VM.3N.z >N = f(z) > M

lim, o f(z) = —oc means
VM.3AN.x < N = f(z) < M

Definition 3.2.3 (One-sided limit). lim,_,,+ f(z) = oo means,
VM.30>0.a<z<a+d= f(x)>M

lim,_,,- f(z) = —oo means,
VM.30>0.a—d0<z<a= flz) <M

Ex 3.2.1. Prove
. 2224+ +5
im ————— —

T——00 3x

Proof. Consider
222+ 2+ 5
— <
3z

W =
8

we want

1

x < =3(|M|+1)
Given M. Let N = —3(|M| + 1). For x < N we get

222+ +5 1 1 1
1 <32 <3zN=3E3)(M+1)=~(M]+1) < - M| <
O
Ex 3.2.2. To prove
2x n
m —— =
et 73— 1 >

Proof. Consider

2z 2z 1 2z 1

2
. > = forl<z<?2
r—1 22424+1" 2z-1 7 v

»B—1 (x—1)(a2+24+1) B
We want

1 2
c=>|M|+1
z—1 7 M|+
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Given M, let § = min(1, syz7qy) for 0 <z —1 < 4. We get
26 1 2 7(M|+1) 2
A N | V (E S T VI V)
P11 z-1 7> 2 7 M|+ 1> M| =

3.3 Continuity

Definition 3.3.1 (Continuity). ECR, f: E >R, a € E.

lim f(z) = f(a) <= Ve>0.30>0.Vz € E. |z —a| <d=|f(zx) — fla)|<e

Tr—a
» f is continuous at a

« If f is continuous at every point a € E, then f is said to be continuous on E

Theorem 3.3.1 (Extreme Value Theorem). f is continuous on [a,b], then
Iz, xpr € [a,b]. YV € [a,b]. f(zm) < f(z) < flzm)

Proof. f(la,b]) is a nonempty set, then sup f([a, b]) and inf f([a,b]) exists. By definition of sup, there exists
yn € f([a, b)) with y,, — sup f([a, b]) as n — oo, therefore there are x,, € [a,b] with f(x,) = y,. By B-W there
is &n, — xap € [a,b]. By continuity, f(z,,) — f(zrm), yn, — sup f([a,b]), gives that f(zar) = sup f([a,b]).
Similarly, f(x,,) = inf f([a,b]). O

Theorem 3.3.2 (Intermediate Value Theorem). If f is cont on [a,b] and if y is any value between f(a) and
f(b) then there is a ¢ between a,b with f(c) = y.

Proof. Suppose without lost of generality, f(a) < y < f(b). SInce f is cont at a, for ¢ = WT’C(“) > 0 there
isad > 0sothat z € [a,b], [t —a|] < ¢ = |f(z)— f(a)] < %@, so f([a,a + 4]) is bounded above by
y. Let E = {t| f([a,t))} is bounded above by y. Consider sup E, exists by Completeness. E is nonempty
t = a+ 6 € E, bounded above by b. Let t, € E, t, — supFE, gives that f(¢,) < y. By Continuity,
f(tn) = f(sup E) <y. o )
A If f(sup E) = y, done. If f(sup E') < y, then by Continuity of f at sup E, for e = =522 there is a
0 > 0 such that
y—supk

2

flx) < W <yforallz € (sup E — §,sup E + §). Contradiction. O

lz—a| <d=|f(x)— f(supE) <

Ex 3.3.1. If f is continuous on [a,b] = I then f(I) = J is a closed bounded interval.

Proof. By the extreme value theorem, 3z,,, z) € [a,b]. so that Vz € [a,b]. f(zm) < f(z) < f(xrp). This
shows that

fla, b)) < [f (@m), f(za)]
Let f(z,m) <y < f(zar). By the IVT there is an = between z,,,, s with y = f(x). This shows

[f(@m), f(@ar)] € f(la, b))

which means

J=[f(zm), f(@ur)]

Ex 3.3.2. f, g are cont on [a,b] with f(a) < g(a) and f(b) > g(b). Shows that Ic € [a,b]. f(c) = g(c)

Proof. Consider h(z) = f(z) — g(x). Then h(a) < 0 < h(b). By IVT, there is a ¢ between «a, b with h(c) = 0.
This shows that f(c) = g(c). O
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3.4 Uniform continuity

Definition 3.4.1 (Uniform Continuity). f: E — R is uniform continuous means

Ve>0.30>0.Ve,y € E. |z —y|<d=[f(z) — fly) <¢

Theorem 3.4.1. If f : E — R is unif cont, x,, from E is Cauchy, then f(z,,) is Cauchy.
Ex 3.4.1. f(x) = < is not unif cont on (0,1)

Proof. Letx, = A5,n €N,

x, € (0,1)
r, - 0asnn— oo

therefore z,, is Cauchy. If f(x) = /= were unif cont then f(x,) is Cauchy, and therefore converges. But
flzn) = VT1+1 = n + 1 which diverges to co, contradiction, therefore f(z) = /= is not unif cont. O

Theorem 3.4.2. f cont on [a,b], fis uniformly continuous on [a, ]

Theorem 3.4.3. f cont on (a,b), fis uniformly continuous iff

hma;—>a+ f(l’) H
i ) § et

Proof. (of =) Let z,, € (a,b) with z,, — a as n — oo. z,, is Cauchy. Then f(z,) is Cauchy. Therefore there
exists L s.t. f(z,) — L asz — oo. Let y, € (a,b) with y,, = a as n — oo. Similarly, there exists K s.t.
f(ym) — K as m — oco. Consider

IL = K| =|L = f(zn) + f(zn) = f(ym) + f(ym) — K]
=L = flza)| + [f(@n) = fym)] + [ (ym) — K]

Given € > 0,
AN 0> Ny = |L— f(zn)] < g
€
ANs. m > N = | f(ym) — K| < 3

36> 0. [z —y| < 6= |f(x) - fly)| < =

3
For this ¢, there is an N3 such that
1
nZN3¢|xnfa|<§5
And there is an N, such that
1
mZN4é|ymfa\<§5
Then for n, m > max(Ns3, Ny)
|517n 7ym| = |xn7a+a7ym|

S |xn - CL| + |CL - y'rn|

1 1
<§§+§6_5
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This gives

Ve>0. |[L-K|<e¢
L=K

So for any sequence z,, € (a,b) with x,, — a, f(x,) — L. By SCL

lim f(z)=1L
z—at
Similarly,
lim f(z) =K
T—b~
O
Theorem 3.4.4. If f(x) satisfies on E
[f(@) = f(y)l < Cle -yl
Then f is unif cont on E.
Proof. Givene > 0let § =¢/c > 0 and for |z — y| < § we get
€
[f(@) = fl < Cle -yl <C- 7 =e¢
O
Theorem 3.4.5. g(x) = |z| is uniformly continuous
Proof. Consider
2] = [yll < [z =yl
Givene > 0,letd =cfor [z —y| < dweget|lz| —|y|]| < |z —y|<I=¢ O

Ex 3.4.2. f(x) = xzlog(Y/x) on (0,1). Is it unif cont on (0, 1)?

Answer.

. 1 .
lim zlog| — | = lim
0+ x a—0t 1z

. —1
= lim x 3
r—0t+t —x~
= lim x
rz—0t
=0

) 1
lim xlog <> =0
r—1- x

Ex 3.4.3. Use the definition to prove that f(z) = 322 + x + 5 is unif cont on [1, 4]

It is uniformly continuous.

Proof. Consider

[f(@) = f(y)l = |32 + 2+ 5 — (3y> + y +5)|
= |3(2® —y?) + = —y|
=Bz +y)(z—y) +z -y
=z —y|13(z +y)+1|
<25z -yl
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Given e > 0, let 0 = 5. For [z — y| < §, we get

[f(@) = f(y)l < 25|x —y| < 25- % =

O

Ex 3.4.4. f(x) = x is unif cont on (1,0) since |f(z) — f(y)| = |x — y|- Given e > 0, let 6 = ¢, then |z — y| <
0= |f(z) = fly)l =le—yl <e

Theorem 3.4.6. f,g: E — R are unif cont and bounded, f - g : E — R is unif cont.

Proof. Since f, g are bounded, M, K > 0. s.t.

Ve e E. |f(z)| <M
Ve e E. |g(z)| < K

Consider

(x) = f()g(@) + fy)g(z) — f(y)g ()|
f@) = fl =+ 1fW)lg(x) — g(y)l
) = f)|+ Mlg(z) — g(y)l

[f(@)g(x) = F(Y)g()| = [f (=
lg

(x
K

)9
)
fx

<
<

Given € > 0 there is d1, 05 S.t.

Ve,y € E. |z —y| <o = |f(x) - f(y )\<ﬁ
Vz,y € E. |z —y| <dy = |g(z) —g(y)| < ﬁ

Let § = min(dy, 82). If |z — y| < §, we get

|f(x)g(x) = f(¥)g(y)| < Klf( )= ()l +M|g(x) —9(v)|

— €
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Chapter 4

Differentiability on R

4.1 Derivative

Definition 4.1.1 (Derivative). [ is an open interval of R, a € I, f : I — R. f is differentiable at a means

Elf/(a) = lim f(x) — f(a)

T—a T —a

4.2 Differentiability

Definition 4.2.1 (Differentiability). If f is differentiable at every point of I, then f is differentiable on I. We
have f': I — R. If I is continuous on I then we say that f € C*(I).

Definition 4.2.2. o(h) means limy,_, @ = 0, and it goes to zero faster than h as h — 0.

Theorem 4.2.1. h is not o(h)
Theorem 4.2.2. If f is differentiable at a, then

fla+h) = f(a) = f'(a)h = o(h), for |h| <§

Proof.
. flath)=fla)=f(a)h . (flath)—=fla) . \_
f R TR — iy (L2820 10) o
Remark 4.2.1. f(a+h) = f(a) + f'(a)h + o(h)
Theorem 4.2.3. If 3m. f(a + h) — f(a) — mh = o(h), [ is differentiable at a and f'(a) = m
Proof.
I fla+h)—f(a) .. fla+h)— f(a) —mh+mh
im ————~ = lim
h—0 h h—0 h
- i (2 )
=m

25
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Theorem 4.2.4. f differentiable at a implies f is continuous at a

Proof. Note that

lim f(z) = f(a) < lim(f(z) - f(a)) =0

r—a r—a
Consider

, _ o f@) = f(a)

ll}g}l(f(x) = f(a)) = ;lj}}lﬁ (z—a)
= f'(a)-0=0
O

Remark 4.2.2. If f is not continuous at a, then f is not differentiable at a
Ex 4.2.1. f(x) = |z| is not differentiable at x = 0.
Proof. limy_ M = limp_0 %, does not exist. O

Ex 4.2.2. f is not differentiable at x = 0.

_ Jwsin(Y/z) x#0
f(w)—{o 7

Ex 4.2.3.

~Ja?sin(Yz) x#0
fle) = {o z=0

Answer. At a = 0, limy, o 252" — Jim, o hsin(1/n) = 0. But f ¢ CL(R).
Theorem 4.2.5. f, g differentiable at a implies f + g, fg are differentiable at a. Moreover
(f - 9)'(a) = f'(a)g(a) + f(a)g'(a)
Ex 4.2.4. True or False. f = g, f is differentiable on [a, b] implies g is differentiable on (a,b).

Answer. False. Let

g(fv){l_1 i;g

g is nowhere continuos so nowhere differentiable. But f(x) = 1 and differentiable on [a, b].

Ex 4.2.5. True or False. f is differentiable on (a,b] and

@)

Tr—a

Slasz—at

then f is uniformly continuous on (a, b)

Answer. True. lim, ..+ f(z) = lim,_,,+ f(z)(x —a)=1-0=0. Since lim,_,;- f(z) = f(b). By uniformly

r—a

continuous theorem, f is uniformly continuous on [a, b].
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Theorem 4.2.6. For f(z) = 2", n € N. f'(z) = na"~!

Proof.

oy e f(@) = fla)

fia) = lim —————
oy " —a”
7305% Tr—a

(z—a)(z" ' +2" 20+ - +za" 24+ a"")

= lim
z—a T —a
R n—1 n—2 n—2 n—1
=lim(z" " +2" “a+---+xzad" " 4+a""")
r—a
:an—1_|_an—2.a+'..+a_an—2_~_an—1
_ nan—l

7'(z) = na"?

O
Theorem 4.2.7. f(z)= % =2 ", neN o #0. f'(z) = —nz— "}
Proof.
e = i 10—
11
= lim &~ "
T=a T —a
_(xn_an)
= lim —"2"
T—a T —a
— lim _(xn—l +xn—2a+ . +xan—2 +an—1)
T aoa anx™
_nanfl
a2n
= —na "1
f/(l') — _nx—n—l
O

Theorem 4.2.8. f: (0,00) = R, f(z) — f(y) = f (7) £(1) = 0. Then

(a) If f is continuous at 1, f is continuous on (0, co).

Proof. Since f is continuous at 1,
Ve>0.30 >0. (Jz -1 <d=|f(x) — f(1)] <e¢)
Let a € (0, 00), consider
x x
1f(z) — f(a)| = ’f (5)‘ < ¢ when ‘E - 1‘ <&

Given ¢ > 0, let 6 = ady. If |z — a| < 0 then f(z) — f(a) <€ O
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(b) If f is differentiable at 1, f is differentiable on (0, o).

Proof. Since f is differentiable at 1

iy = i 4@ = ) f()
f(l) 91;1—>rnl rz—1 7111%11.’[}—1
Let a € (0, 00), consider
/ T f(x)ff(a)i f(%)i f(%) 71- f(%)i]-/
fa) = e e e T ey T = SO

Definition 4.2.3 (Local Maximum and Minimum). f: I — R, I is an open interval. f has a local maximum
at ¢ means
36 >0.|lz—c <d= f(z) < f(e)

f has a local minimum at ¢ means

36 >0.|lz—c <d= f(x) > f(c)

Theorem 4.2.9. If f has an local maximum at c and is differentiable at ¢, then f'(c) = 0.

Proof.

f'(c) = lim w = lim w = lim w

h—0 h h—0+ h—0— h
fle+h)—fle)<0
O

Definition 4.2.4 (Even and Odd Function). f : (—a,a) — R. f is even means f(x) = f(—z). f is odd
means f(—x) = —f(z)

Theorem 4.2.10. f is differentiable on (—a,a). f is odd implies f’ is even.

Proof.
o) = iy 151510
f/<—$') _ }li% f(—ﬂ? + h}z] - f(—.]?)

B R
h—0 h

o S0~ @)
h—0 —h

b))
—h—0 h

~ /'@
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Theorem 4.2.11 (Chain Rule). f : A - R, g : B - R, f(A) C B. f is differentiable at a € A, g is
differentiable at b € f(a). Then g o f is differentiable at a and (g o f) (a) = ¢'(f(a))f'(a)

Proof. By definition,
fla+h) = f(a) + f'(a)h + o(h)
g(b+ k) =g(b) +g'(b)k + o(k)
(9o f)la+h) =g(f(a+h))
9(f(a) + f'(a)h + o(h))
Let k = f'(a)h + o(h)

+g'(b)k + o(k)
+9'(0)f"(@)h+ g'(b)o(h) + o(h)
Of)(a) (g0 ) (a)h+o(h)

4.3 The Mean Value Theorem

Theorem 4.3.1 (Mean Value Theorem). f : [a,b] — R. f is continuous on [a, b], differentiable on (a,b). Then
there exists ¢ € (a, b) such that f'(c) = W

Theorem 4.3.2. If f is continuous on [a, b] and differentiable on (a,b) and f'(x) > 0 for all € (a,b) then f is
strictly increasing.

Proof. For z,y € (a,b) with z < y, apply MVT to f on [x,y] C [a, b]. Then
de € (z,y). fly) = f(@) =)y —x) >0
O

Theorem 4.3.3. If f is continuous on [a, b] and differentiable on (a,b) and f'(x) = 0 for all € (a,b) then f is
a constant function.

Proof. For z,y € (a,b) with x < y, apply MVT to f on [z,y] C [a,b]. Then
e € (z,y). f(y) = f(@) = f(c)(y —2) =0
O

Corollary 4.3.1. f,g continuous on [a,b], differentiable on (a,b) and f'(x) = ¢'(x) for all = € (a,b), then
YV € [a,b]. g(z) = f(z) +c

Proof. Let h(x) = g(x) — f(z). h is continuous on [a, b], differentiable on (a,b) and 1/ (z) = ¢'(z) — f'(z) =0
for all « € (a,b). By the previous theorem, h is a constant function. Then g(z) = f(z)+cfor somec e R. O

Theorem 4.3.4 (Generalized Mean Value Theorem). If f, g are continuos on [a, b] and differentiable on (a,b)
then 3c € (a,b). with

Proof. Let
h(z) = (f(b) = f(a))(g(x) = g(a)) — (9(b) —
h is continuous on [a, b], differentiable on (a,b). h(a) = h(b) =0
W (z) = (f(b) = f(a)) - g'(c) = (9(b) — g(a)) - f'(c)
S

Apply Rolle’s Theorem to h on [a, b]. Then h/(c) = 0 for some ¢ € (a,b). O



30 CHAPTER 4. DIFFERENTIABILITY ON R

Theorem 4.3.5. If f is increasing on [a, b], then for all ¢ € [a,b)

fle+) = lim f(x) exists

Tr—c+

Forall c € (a,b]
fle=) = lim f(x) exists

Tr—c+
When f(c+) # f(c—), then f is not continuous at c. A jump discontinuity j(c) = f(c+) — f(c—).
Proof. Let ¢ € [a,b). Consider the set f((c,b)), since f is increasing , this set is bounded below by f(c). Call
f(c+) = inf f((c,b)). For any e = 1 there is a point f(z,) € f((c,b)), then

flet) < flan) < flet) + =
by Squeeze Theorem, f(x,,) — f(c+) as n — oo. Given e > 0 there exists N so that
n>N=|f(zn) = flet) <e

Since x,, € (¢,b), ¢ < Ty, flct) < f(zn), 0 < f(xn) — fle+) < e Fore <z < zy, f(x) < f(zy,) since f is
increasing. Then

0 < f(x) = flet) < flan) = flet) <e

Let§ =z, — ¢, for c < x < ¢+ § we have |f(z) — f(c+)| <. O
Theorem 4.3.6. If f is monotone on [a,b] that f has at most a countable set of jump discontinuity.

Proof. For increasing function f, recall at a jump discontinuity, ¢ € (a,b), j(¢) = f(c+) — f(c—). If there are
discontinuity at ¢ and Nc € (a,b) with ¢ < Ne, f(c+) < f(Ne—). For K € Nlet B, = {c € (a,b) | j(c) < 1 }.
If there are N then

Z ¢) < f(b) — f(a)
:\NSk'(f(b)*f(“))

= F is finite

??‘M—l

then £ = | J;—, Ex is all jump discontinuity. E is at most countable. O
Ex 4.3.1. Prove that 1 +x < e® for x > 0

Proof. Let f(x) = €? — (1 + ), f(0) = 0, f'(x) = e* — 1. f’ is continuous and differentiable on [0, cc).
f"(x) = e* > 0forall z € R. g is strictly increasing, for 0 < z, g(0) < g(z), 0 < e* — 1, then f is strictly
increasing. For 0 < z, f(0) < f(z),e* = (1+z) >0,¢e* > 1+z. O

Ex 4.3.2. Prove that (1+z)* <14 ax, for 0 < a < land z > 0.
Proof. Whena =1, 14z < 1+u=. Set f(x) = (14 )* is continuous and differentiable for 0 < o < 1, z > 0.
J'(@) = a1+ 2)°?
For z > 0, apply MVT for f on [0, x].
e e (0.2). f(x) = F(0) = f(c) -

1+2)*—l=ala+c)* - z<a -z
I+2)*<a-z
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4.4 Taylor’s Theorem and L’Hospital’s Rule

Observe If f is differentiable on (a,b) and z, z¢ are two points from (a, b), apply MVT to f. From z to x,

then 3¢ € [z, zo]. f(z) — f(xo) = f(c)(x — x0), or f(z) = f'(c)(x — x0) + f(x0).

Definition 4.4.1 (Taylor’s Polynomial). If f is n € N times differentiable on (a, b) then

(k) (4

P,(z) = Z / k(' 0) (x — zo)*
k=0 ’

is the Taylor’s Polynomial of degree n.

Theorem 4.4.1 (Taylor’s). If f is n + 1 times differentiable on (a, b) then

fre)
(n+1)!

Rn(m)

)n+1

f(@) = Pa(2) + (z—a

where R, (x) is the error in approximating f(x) by P, (z).
Proof. Let

") (£ (g — )R
G0 = f) -y T
k=0 ’

is continuos and differentiable on the interval from x to z¢. Then

f(n-l—l)(t)

G(x) =0, G(xg) = f(z) — Pu(z), G'(t) = T(w — )"
Now let
B (fL’ _ t)n-‘,—l
H(t) = (n+1)!
is continuos and differentiable on the interval from z to zy. Then
B B (.T _ mo)n,+1 , . (.1? _ t)n
H(x) =0, H(%)—m7 H'(t) = o

Apply the GMVT to G, H on the interval from x to x,. Then there exists ¢ € (z, z) such that

(G(x) = G(x0))H'(c) = (H(x) — H(z0))G'(c)

(z—0"  (z—ag)™t ()

(f(z) = Pu(z)) W ) o (x —c)"
(.%‘ _ xo)n+1 1
f(z) = Pu(z) = NCES Ft(e)
(z — o)™ 1
flz)= NCET T () + Po(x)
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Ex4.4.1. f(z)=¢", g =0

Answer.

!
P k!
L
k=0
For some ¢ € (0, z)
R, (z) = FUrY e
(n+1)! (n+1)!

If -1 <z <1, then

IR (z)] < (nj 7 < 000009
Ex 4.4.2. f(x)=sinz, 29 =0
Answer.
n L a2
P, S N a—
2n+1(7) kzzo( T
_ f(2n+2) (c) 2n+2
R2n+1(x) = miﬂ
For -1 <z <1,whenn =4
|Ro(z)| < .00000003
Ex 4.4.3. What is
3 . 25 pin—1
TR (4n—1)!

Answer.

Ex4.44. f(z)=logz, =1

Answer.

" fk)
Py =3 LW -1y
k=0 ’
" k)
:Zf k'(l)(l'—l)k
k=1 ’
N \k+l
= Z ( 1}2 (x— 1)k
k=1
Rn(z) = f"(e)(n + 1)!(n — 1)
(=1)"*2n!
e
(_1)n+2

— _ 1 n+1
(n+1)2¢nt1 (2 )

(for some ¢ € (0,z))
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Theorem 4.4.2 (I'Hospital’s Rule). I is an open interval, a is in I and is an endpoint of I. f, g are differentiable

on I with f(z) #0# ¢'(z) forall x € I.
!
lim f(z) = lim g(z) =0oroco = lim f/(x) =BeR = lim J@)
et et et 9'() Lt 9(@)
Proof.
(Easy case) a € R
lim f(z) = lim g(z) = 0

Tr—a
zel xzel

Define f(a) = g(a) = 0. Then for any « € I, f, g are continuos and differentiable on the interval from
a to z. Apply GMVT to f, g on the interval from «a to z, then there exists ¢ € (a, x) such that

(Harder case) a = +oo
lim f(z) = lim g(z) =0

Given € > 0, 3N > 0 so that

Sofory=1

1 1 — — 1 1
lim g(1/s) =0= lim g(t)

LTy
y—0+ g'(1/y) - _22 o0t g' (M) B



