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Chapter 1

Real number

1.1 Field Properties

1. +

• Communitive: ∀x, y ∈ R. x+ y = y + x

• Associative: ∀x, y, z ∈ R. (x+ y) + z = x+ (y + z)

• Identity: ∃0 ∈ R. ∀x ∈ R. x+ 0 = x

• Additive inverse: ∀x ∈ R. ∃ − x ∈ R. x+ (−x) = 0

2. ·

• Communitive
• Associative
• Identity: 1 ̸= 0

• Multiplicative inverse: ∃x−1 = 1
x . x · 1

x = 1.
• Distributive law: ∀a, b, c ∈ R. a · (b+ c) = ab+ ac

Theorem 1.1.1. If a+ x = a then x = 0

Proof. Add −a to both side:

−a+ a+ x = −a+ a

(−a+ a) + x = (−a+ a)

0 + x = 0

x = 0

Theorem 1.1.2. If a+ x = 0 then x = −a

Proof.

∃ − a ∈ R. (−a+ a) + x = −a+ 0

0 + x = −a

x = −a

3
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Theorem 1.1.3. ∀a ∈ R. a · 0 = 0

Proof. Consider

a+ a · 0 = a · 1 + a · 0
= a · (1 + 0)

= a · 1
= a ⇒ a · 0 = 0

Theorem 1.1.4. ∀a ∈ R. (−1)a = −a

Proof. Consider

a+ (−1)a = a · 1 + a(−1)

= a(1 + (−1))

= a · 0
= 0

By theorem 1.1.2

(−1)a = −1

1.2 Order

A relation < on R× R satisfying

1. Trichotomy: ∀a.b ∈ R. one and only one is true:

a = b, a < b, b < a

2. Transitivity: ∀a, b, c ∈ R. , if a < b and b < c then a < c.

3. Addictive property: ∀a, b, c ∈ R. , if a < b then a+ c < b+ c.

4. Multiplicative property: ∀a, b, c ∈ R.

(i) if a < b and c > 0 then ac < bc

(ii) if a < b and c < 0 then ac > bc

Theorem 1.2.1. ∀a ∈ R \ {0} . a2 > 0

Proof. Since a ̸= 0, by Trichotomy, a > 0 or a < 0.

• If a > 0, then by Mp(i), a2 > a · 0 = 0, a2 > 0

• If a < 0, then by Mp(ii), a2 > a · 0 = 0, a2 > 0
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Theorem 1.2.2. If a > 0 then a−1 = 1
a > 0

Proof. a−1 ̸= 0.

(i) If a−1 = 0 then a · a−1 = 0, contradiction.

(ii) If a−1 < 0, by Mp(ii)

a−1 · a < 0

1 < 0

contradiction.

So by Trichotomy, a−1 > 0.

Theorem 1.2.3. If 0 < a < 1, then 0 < a2 < a < 1

Proof. By Mp(i)

0 · a < a · a < a · 1
0 < a2 < a

Definition 1.2.1 (Square root). For a > 0 there is
√
a > 0 such that (

√
a)2 = a

Theorem 1.2.4. If 0 < a < 1 then 0 < a <
√
a < 1

Proof. First prove
√
a < 1

(i) If
√
a > 1 then

√
a > 0. By Mp(i), (

√
a)2 >

√
a > 1, a > 1, contradiction.

(ii) If
√
a = 1 then a = (

√
a)2 = 1, contradiction.

By Trichotomy, 0 <
√
a < 1. By Mp(i)

0 ·
√
a <

√
a ·

√
a <

√
a · 1

0 < a <
√
a < 1

Theorem 1.2.5. If 0 ≤ a < b and 0 ≤ c < d then ac < bd

Proof.

• When a = 0 or c = 0, ac = 0. And 0 < b and 0 < d so by Mp(i), 0 < bd, so ac < bd.

• Now consider 0 < a < b and 0 < c < d. By Mp(i), 0 < ac < bc and 0 < bc < bd. By transitivity, ac < bd.

Theorem 1.2.6. If a > 1 then a >
√
a > 1

Proof.

0 <
1

a
< 1

0 <
1

a
<

√
1

a
< 1

a >
√
a > 1

Theorem 1.2.7. a, b ≥ 0 then
√
a,
√
b ≥ 0, then (

√
a−

√
b)2 ≥ 0
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1.3 Absolute Value Function

|x| =

{
x x ≥ 0

−x x < 0

Note. if x < 0, by Mp(ii), (−1)x > 0, −x > 0.

Theorem 1.3.1. |a| = |−a|

Proof. By Trichotomy

(i) a > 0: |a| = a, and −a < 0, |−a| = a

Theorem 1.3.2. |ab| = |a| |b|

Theorem 1.3.3 (Fundamental Theorem Of Absolute Values). |a| < M ⇐⇒ −M < a < M

Proof.

1. Assume |a| < M , to prove that −M < a < M .

• if a ≥ 0, then |a| = a, 0 ≤ a < M . Since 0 < M , −M < 0, −M < a < M .
• if a < 0, then |a| = −a, 0 < −a < M , M > 0 > a > −M , so −M < a < M .

2. Assume −M < a < M , to prove that |a| < M .

• if a ≥ 0 then |a| = a < M .
• if a < 0 then |a| = −a. Since M > −a > −M , M > |a|.

Theorem 1.3.4 (1st Triangle Inequality). |a+ b| ≤ |a|+ |b|

Proof.

|a| ≤ |a|
− |a| ≤ a ≤ |a|

|b| ≤ |b|
− |b| ≤ b ≤ |b|

− |a| − |b| ≤ a+ b ≤ |a|+ |b|
|a+ b| ≤ |a|+ |b|

Theorem 1.3.5 (2nd Triangle Inequality). ||a| − |b|| ≤ |a− b|

Proof.

|a| = |a− b+ b| ≤ |a− b|+ |b|
|a| − |b| ≤ |a− b|

|b| = |b− a+ a| ≤ |b− a|+ |a|
− |b− a| ≤ |a| − |b|
||a| − |b|| ≤ |a− b|

Theorem 1.3.6. If |a| < ϵ for ϵ > 0 then a = 0

Proof. Suppose |a| > 0. set ϵ = |a|
2 > 0, then |a| > ϵ. Contradiction. So |a| = 0, a = 0.
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1.4 Supremum and Infimum

Let E ⊆ R, E ̸= ∅.

Definition 1.4.1 (Bounded above). ∃M ∈ R. ∀x ∈ E. x < M . M is the upper bound.

Definition 1.4.2 (Supremum).

(i) ∀x ∈ E. x ≤ supE

(ii) If M is a upper bound of E, then supE ≤ M (Or, no M ≤ supE is an upperbound)

Definition 1.4.3 (Bounded below). ∃M ∈ R. ∀x ∈ E. x > M . M is the lower bound.

Definition 1.4.4 (Infimum).

(i) ∀x ∈ E. x ≥ inf E

(ii) If M is a lower bound of E, then inf E ≥ M

Ex 1.4.1. E = [0, 1] = {x | 0 ≤ x ≤ 1} , supE = 1, inf E = 0

Ex 1.4.2. E = (0, 1) = {x | 0 < x < 1} , supE = 1, inf E = 0

Proof. Show if M < 1 then it’s not an upper bound, therefore all upperbound of E greater or equal to 1. If
1
2 < M < 1 then

M =
M +M

2
<

M + 1

2
<

1 + 1

2
= 1

We have M+1
2 ∈ E, M+1

2 > M , M is not an upper bound. Therefore all upper bounds M must be ≥ 1. So,
by def, supE = 1.

Theorem 1.4.1. If s = supE and r = supE then s = r

Proof. s ≤ all upper bounds, r is an upper bound, s ≤ r. r ≤ all upper bounds, s is an upper bound, r ≤ s.
Therefore, by Trichotomy, s = r.

Theorem 1.4.2. If a ∈ E, and a is an upperbound for E then supE = a.

Proof. a satisfies (i) for being a sup. Since a ∈ E. If M is a upperbound of E, a < M . a satisfies (ii) for
being a sup. So a = supE.

Definition 1.4.5. M is not an upperbound for E means ∃x ∈ E. x > M .

Theorem 1.4.3. For E, supE exists, ϵ > 0.

supE − ϵ < supE

So supE − ϵ is not an upperbound, meaning ∃x ∈ E. supE − ϵ < x ≤ supE.

Ex 1.4.3. Let A be an nonempty, bounded set, c > 0. B = {x = ca, a ∈ A}. Prove that supB = c · supA
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Proof. By compeleteness, supA exists. ∀x ∈ B. , ∃a ∈ A. x = c·a. Since a ≤ supA we have x = ca ≤ c·supA.
So c · supA is an upperbound of B. By compeleteness, supB exists. Follows that supB ≤ c · supA. Now,
since supB is an upperbound of B,

∀x ∈ B. x ≤ supB

∀a ∈ A. ca ≤ supB

a ≤ supB

c

So supB
c is an upperbound for A, entails supB

c ≥ supA, namely supB ≥ c · supA. So supB = c · supA.

Ex 1.4.4. Let A,B be nonempty, bounded sets. What is sup(A−B)

sup(A−B) = sup(A+ (−B))

= sup(A) + sup(−B)

= sup(A)− inf(B)

1.5 Completeness

Definition 1.5.1. If E ⊆ R, E ̸= ∅ and E is bounded above then supE exists. (is a real number)

Ex 1.5.1. For rational number:

E =
{ n

m
∈ Q | n

m
< π

}
, supE = π /∈ Q

So Q is not complete.

Definition 1.5.2 (supZ). if E ⊆ Z ⊆ R, and supE exists, then supE ⊆ E.

1.6 Archimedean Principle (AP)

Definition 1.6.1. For all a, b ∈ R, a > 0, there is an N ⊆ N s.t. Na > b.

Proof.

1. If a > b, then N = 1

2. If a ≤ b then let
E = {k ∈ N | ka ≤ b}

Since a ≤ b, k = 1 ∈ E, so E is not empty, k ∈ E ⇒ k ≤ b
a , b

a is an upper bound of E. By Completeness,
supE exists. Call n = supE. By supZ, n ∈ E. Now n + 1 is not in E, therefore (n + 1)a > b. Set
N = n+ 1.
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1.7 Density of Q in R

Definition 1.7.1 (Density). ∀a, b ∈ R. a < b, ∃r ∈ Q. a < r < b.

Proof. By A.P. then there is an N ⊆ N s.t. 1
N < b− a. Let

E =

{
k ∈ Z | k

n
≤ a

}
E is nonempty, bounded above by Na. By Completeness, supE exists. By supZ, supE ∈ E. Set n = supE,
then

n+ 1 /∈ E

n+ 1

n
> a

n

n
≤ a <

n+ 1

n

=
n

n
+

1

n
< a+ b− a = b

a <
n+ 1

n
< b

let r = n+1
n ∈ Q.

1.8 Reflection

Definition 1.8.1 (−E). E ⊆ R. Let −E = {a | a = −x, x ∈ E}.

Theorem 1.8.1. If supE exists, then inf(−E) exists, and equals to − supE.

Proof. Since supE exists,

∀x ∈ E. x ≤ supE

∀x ∈ E. − x > − supE

∀a ∈ −E. a ≥ − supE

So − supE is a lower bound for −E.

∀a ∈ −E. a ≥ M

∀a ∈ −E. − a ≤ −M

∀x ∈ E. x ≤ −M

Therefore supE ≤ −M , − supE ≥ M .

1.9 Monotonicity

Theorem 1.9.1. If A ⊆ B, A ̸= ∅, supB exists, then supA ≤ supB.
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Proof. If a ∈ A ⊆ B then a ∈ B, a ≤ supB. supB is an upperbound for A. By Completeness supA exists
and supA ≤ supB.

Theorem 1.9.2. If A ⊆ B, A ̸= ∅, and inf B exists, then inf A ≥ inf B.

Definition 1.9.1 (Sup and Inf of any set). Let E ⊆ R.

• For E ̸= ∅, If E is not bounded above by any number, then supE = ∞. If E is not bounded below by
any number, then inf E = −∞.

• For E = ∅, supE = −∞, inf E = ∞.



Chapter 2

Sequences on R

2.1 Limits of Sequences

Definition 2.1.1 (Limit).

lim
n→∞

xn = L ⇐⇒ ∀ϵ > 0. ∃N. n ≥ N → |xn − L| < ϵ

Theorem 2.1.1. If xn → L as n → ∞ then all subsets also converge to L.

Theorem 2.1.2. If xn → L as n → ∞ then {xn} is bounded

∀n ∈ N. ∃M. |xn| ≤ M

Ex 2.1.1. True or False. If xn converges then xn

n converges.

Answer. True. limn→∞
xn

n = 0.

Proof. Consider, since ∀n ∈ N. |xn| ≤ M , without lost of generality, M > 0.

|xn|
n

≤ M

n

Given ϵ > 0. By A.P, ∃N ∈ N. so that M < Nϵ.

∀n ≥ M.
∣∣∣xn

n
− 0

∣∣∣ ≤ M

n
≤ M

N
< ϵ

Ex 2.1.2. True or False. If xn does not converge, then xn

n does not converge.

Answer. False. Consider xn = (−1)n. xn does not converge but xn

n → 0 as n → ∞.

Proof. Given ϵ > 0. By A.P, ∃N ∈ N. 1 < Nϵ. For n ≥ N we get∣∣∣∣ (−1)n

n
− 0

∣∣∣∣ = 1

n
≤ 1

N
< ϵ

Theorem 2.1.3. π√
n
→ 1 as n → ∞

11
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Proof. Given ϵ > 0. By A.P., ∃N ∈ N. π2 < N · ϵ2.

π2

N
< ϵ2

π√
N

< ϵ

For all n ≥ N we get ∣∣∣∣1 + π√
n
− 1

∣∣∣∣ = π√
n
≤ π√

N
< ϵ

Theorem 2.1.4. Assume that xn → 1 as n → ∞, then

lim
n→∞

πxn − 2

xn
= π − 2

Proof. By assumption, take ϵ = 1
2 , there exists N so that ∀n ≥ N. |xn − 1| ≤ 1

2 , gives 1
2 < xn < 3

2 .∣∣∣∣πxn − 2

xn
− (π − 2)

∣∣∣∣ = ∣∣∣∣πxn − 2

xn
− (π − 2)xn

xn

∣∣∣∣
=

∣∣∣∣2xn − 2

xn

∣∣∣∣
=

2

|xn|
|xn − 1|

≤ 4 |xn − 1|

By assumption, for any ϵ > 0, |xn − 1| < ϵ
4∣∣∣∣πxn − 2

xn
− (π − 2)

∣∣∣∣ < ϵ

Theorem 2.1.5 (Comparison). If xn → x and yn → y as n → ∞ and if xn ≤ yn for n ≥ N0 then x ≤ y.

Proof. Suppose not, x > y. For ϵ = x−y
2 > 0, then there is N1 s.t. n ≥ N1 → |xn − x| < x−y

2 and N2 s.t.
n ≥ N2 → |yn − y| < x−y

2 .

x+ y

2
= x− x− y

2
< xn

yn <
x− y

2
+ y =

x+ y

2

yn <
x+ y

2
< xn for n > max(N1, N2)

Ex 2.1.3. True or False. If xn → ∞ as n → ∞ then 1
xn

→ ∞.

Answer. False. xn = − 1
n

Theorem 2.1.6. If xn ≥ 0 and xn ≥ 0 as n → ∞ then
√
xn →

√
x as n → ∞.

Proof. Since xn ≥ 0 by comparison x ≥ 0.

• If x = 0, consider
∣∣√xn − 0

∣∣ =
√
xn since xn → 0, given ϵ > 0 there is an N so that n ≥ N →

|xn − 0| < ϵ2. xn < ϵ2,
√
xn < ϵ,

∣∣√xn − 0
∣∣ < ϵ.
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• If x > 0, consider

∣∣√xn −
√
x
∣∣ = ∣∣∣∣(√xn −

√
x)

√
xn +

√
x

√
xn +

√
x

∣∣∣∣
=

|xn − x|
√
xn +

√
x

≤ |xn − x|√
x

Given ϵ > 0 then there is an N s.t.

n ≥ N → |xn − x| <
√
xϵ

So ∣∣√xn −
√
x
∣∣ ≤ |xn − x|√

x
<

ϵ
√
x√
x

= ϵ

Theorem 2.1.7. If x ∈ R then there is a sequence rn from Q s.t. rn → x as x → ∞.

Proof. For n ∈ N by density of Q there is an rn ∈ Q with

x− 1

n
< rn < x+

1

n
⇐⇒ 0 ≤ |rn − x| < 1

n

By squeeze theorem,
|rn − x| → 0 as n → ∞ ⇐⇒ rn → x as n → ∞

2.2 Increasing and decreasing

Definition 2.2.1 (Increasing). {xn} is increasing means xn ≤ xn+1 for all n ∈ N. If xn < xn+1 then strictly
increasing.

Definition 2.2.2 (Decreasing). {xn} is decreasing means xn ≥ xn+1 for all n ∈ N. If xn > xn+1 then strictly
decreasing.

Theorem 2.2.1 (Monotone Convergence Theorem). If xn is increasing and bounded above, then xn →
sup {x1, x2, . . . } as n → ∞.

Proof. Given ϵ > 0, there is an xn ∈ E = {x1, x2, . . . } so that

supE − ϵ < xn ≤ supE < supE + ϵ

for n ≥ N , xN ≤ xn, so

supE − ϵ < xN ≤ xn < supE + ϵ ⇐⇒ |xn − supE| < ϵ

Ex 2.2.1. If 0 < |a| < 1 then an → 0 as n → ∞
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Proof. Consider |an − 0| = |a|n, to prove |a|n → 0 as n → ∞. Here, 0 < |a| < 1, |a|2 < |a|. If |a|n < |a|n+1

then |a|n+1
< |a|n+2. By induction, |a|n+1

< |a|n for all n ∈ N. |a|n is decreasing and bounded below by 0.
By MCT, |a|n → L as n → ∞. Now note that

|a|2n = |a|n |a|n → L · L = L2 as n → ∞

But |a|2n is the subseq of every terms of |a|n. By the subsequence theorem,

|a|2n → L as n → ∞

Therefore L2 = L, gives that L = 0, 1. Since |a| < 1 and |a|n is decreasing, L = 0.

Ex 2.2.2. If a > 0 then a1/n → 1 as n → ∞

Proof. For a > 1 and n < m,
an < am

Take the 1
mn root, we get

(an)
1

mn < (am)
1

mn

a
1
m < a

1
n

1 < a
1

n+1 < a
1
n

a
1
n is decreasing and bounded below by 1. By the MCT, an → L as n → ∞. But

a
1
2n =

√
a

1
n →

√
L

Therefore L =
√
L, L2 = L, L = 1, 2. Since it’s bounded below by 1, L = 1.

Ex 2.2.3. If 0 < x1 < 1, xn+1 = 1−
√
1− xn for n ∈ N, prove that xn converges and find the limit.

Proof. Induct on xn

Base case.

x2 = 1−
√
1− x1

0 < x1 < 1

0 > −x1 > −1

1 > 1− x1 > 0

1 >
√
1− x1 > 1− x1 > 0

−1 < −
√
1− x1 < x1 − 1 < 0

0 < 1−
√
1− x1 < x1 < 1

x2 < x1 < 1

Inductive step. Suppose 0 < xn < 1 repeat the argument with x1 replaced by xn,

0 < xn+1 < xn < 1

By induction the sequence is decreasing and is bounded below by 0. Therefore by MCT it converges. Now
find the L. xn → L as n → ∞.

L = 1−
√
1− L

√
1− L = 1− L

1− L = 1, 0

L = 1, 0

⇒ L = 0
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Ex 2.2.4. x0 > 0 and xn = 3
2 + 2

3xn−1 for n ∈ N. Show xn converges and find the limit.

Proof.

x1 =
2

3
+

2

3
x0 <

1

3
x0 +

2

3
x0 = x0

2 < x1 < x0

If 2 < xn+1 < xn then the same arg gives 2 < 2x+2 < xn+1. By induction, xn converses and bounded below
by 2. By MCT, xn → L as n → ∞. Now find L.

L =
2

3
+

2

3
L

L = 2

Ex 2.2.5. x0 < 3, xn = 3
7 + 6

7xn−1, prove it converges and find the limit.

Proof.

x0 =
1

7
x0 +

6

7
x0 <

3

7
+

6

7
x0 = x1 <

3

7
+

18

7
= 3

xn =
1

7
xn +

6

7
xn <

3

7
+

6

7
xn = xn+1 <

3

7
+

18

7
= 3

xn is increasing and bounded above. By MCT, xn → L as n → ∞. Taking the limit in

xn =
3

7
+

6

7
xn−1

We get

L =
3

7
+

6

7
L

L = 3
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Chapter 3

Functions on R

3.1 Limits

Definition 3.1.1. Let I be an open interval, a ∈ I, Î = I \ {a}, f : Î → R. limx→a f(x) = L means

∀ϵ > 0. ∃δ > 0. ∀x ∈ Î . (0 < |x− a| < δ ⇒ |f(x)− L| < ϵ)

Ex 3.1.1. f(x) = mx+ b, a ∈ R

Answer. limx→a f(x) = mx+ b

Ex 3.1.2. f(x) = x3 + x+ 1, prove limx→2 f(x) = 11

Proof. For |x− 2| < 1, 1 < x < 3 and
∣∣x2 + 2x+ 5

∣∣ ≤ 20. For |x− 2| < 1 we have∣∣x3 + x+ 1− 11
∣∣ ≤ ∣∣x2 + 2x+ 5

∣∣ |x− 2| ≤ 20 |x− 2|

Given ϵ > 0, let δ = min(1, ϵ
20 ). For 0 < |x− 2| < δ we get

∣∣x3 + x+ 1− 11
∣∣ ≤ 20 |x− 2| < 20 · ϵ

20
= ϵ

Definition 3.1.2 (Sequential Characterization of Limits). Let xn be sequence from Î,

lim
x→a

f(x) = L ⇐⇒ lim
n→∞

xn = a → lim
n⇒∞

f(xn) = L

Definition 3.1.3 (Polynomial). n ∈ N, a polynomial of defgree N

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n =

n∑
k=0

xkx
k, an ̸= 0

17
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Theorem 3.1.1.

lim
x→x0

P (x) = P (x0)

Proof. Recall

lim
x→x0

mx+ b = mx0 + b

So,

lim
x→x0

x2 = lim
x→x0

x lim
x→x0

x = x0 · x0 = x2
0

lim
x→x0

x3 = lim
x→x0

x2 lim
x→x0

x = x2
0 · x0 = x3

0

If limx→x0
xn = xn

0 then

lim
x→x0

xn+1 = lim
x→x0

xn lim
x→x0

x = xn
0 · x0 = xn+1

0

By induction limx→x0
xn = xn

0 for all n ∈ N. For Pn(x) = a0 + a1x+ · · ·+ anx
n,

lim
x→x0

Pn(x) = lim
x→x0

a0 + lim
x→x0

a1x+ · · ·+ lim
x→x0

anx
n

= a0 + a1x0 + · · ·+ anx
n
0

= Pn(x0)

Definition 3.1.4 (Rational Function). P (x) and Q(x) are polynomials with Q(x) ̸= 0, then a rational
function R is

R(x) =
P (x)

Q(x)
=

∑n
k=0 akx

k∑m
k=0 bkx

k

Theorem 3.1.2.

lim
x→x0

R(x) =
limx→x0

P (x)

limx→x0
Q(x)

=
P (x0)

Q(x0)
, Q(x0) ̸= 0

Theorem 3.1.3. If P (x) and Q(x) are polynomials with deg(P ) ≤ deg(Q). Then

lim
P (x)

Q(x)
=

{
0 deg(P) < deg(Q)
an/bn deg(P) = deg(Q)

Proof. For m > n

lim
x→∞

(anx
n + · · ·+ a0)

(bmxm + · · ·+ b0)

1
xm

1
xm

= lim
x→∞

(anx
n

xm + · · ·+ a0

xm )

( bmxm

xm + · · ·+ b0
xm )

=
0 + · · ·+ 0

bm + 0 + · · ·+ 0
= 0
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3.2 Convergence and Divergence

Definition 3.2.1 (Convergence). limx→∞ f(x) = L means

∀ϵ > 0. ∃N. x > N ⇒ |f(x)− L| < ϵ

limx→−∞ f(x) = L means
∀ϵ > 0. ∃N. x < N ⇒ |f(x)− L| < ϵ

Definition 3.2.2 (Divergence). limx→∞ f(x) = ∞ means

∀M. ∃N. x > N ⇒ f(x) > M

limx→−∞ f(x) = −∞ means
∀M. ∃N. x < N ⇒ f(x) < M

Definition 3.2.3 (One-sided limit). limx→a+ f(x) = ∞ means,

∀M. ∃δ > 0. a < x < a+ δ ⇒ f(x) > M

limx→a− f(x) = −∞ means,
∀M. ∃δ > 0. a− δ < x < a ⇒ f(x) < M

Ex 3.2.1. Prove

lim
x→−∞

2x2 + x+ 5

3x
= −∞

Proof. Consider
2x2 + x+ 5

3x
<

1

3
x

we want
1

3
x < −(|M |+ 1)

x < −3(|M |+ 1)

Given M . Let N = −3(|M |+ 1). For x < N we get

2x2 + x+ 5

4x
<

1

3
x <

1

3
N =

1

3
(−3)(|M |+ 1) = −(|M |+ 1) < − |M | ≤ M

Ex 3.2.2. To prove

lim
x→1+

2x

x3 − 1
= +∞

Proof. Consider

2x

x3 − 1
=

2x

(x− 1)(x2 + x+ 1)
=

1

x− 1
· 2x

x2 + x+ 1
>

1

x− 1
· 2
7

for 1 < x < 2

We want
1

x− 1
· 2
7
> |M |+ 1
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Given M , let δ = min(1, 2
7(|M |+1) ) for 0 < x− 1 < δ. We get

2δ

x3 − 1
>

1

x− 1
· 2
7
>

7(|M |+ 1)

2
· 2
7
= |M |+ 1 > |M | ≥ M

3.3 Continuity

Definition 3.3.1 (Continuity). E ⊆ R, f : E → R, a ∈ E.

lim
x→a

f(x) = f(a) ⇐⇒ ∀ϵ > 0. ∃δ > 0. ∀x ∈ E. |x− a| < δ ⇒ |f(x)− f(a)| < ϵ

• f is continuous at a

• If f is continuous at every point a ∈ E, then f is said to be continuous on E

Theorem 3.3.1 (Extreme Value Theorem). f is continuous on [a, b], then

∃xm, xM ∈ [a, b]. ∀x ∈ [a, b]. f(xm) ≤ f(x) ≤ f(xM )

Proof. f([a, b]) is a nonempty set, then sup f([a, b]) and inf f([a, b]) exists. By definition of sup, there exists
yn ∈ f([a, b]) with yn → sup f([a, b]) as n → ∞, therefore there are xn ∈ [a, b] with f(xn) = yn. By B-W there
is xnk

→ xM ∈ [a, b]. By continuity, f(xnk
) → f(xM ), ynk

→ sup f([a, b]), gives that f(xM ) = sup f([a, b]).
Similarly, f(xm) = inf f([a, b]).

Theorem 3.3.2 (Intermediate Value Theorem). If f is cont on [a, b] and if y is any value between f(a) and
f(b) then there is a c between a, b with f(c) = y.

Proof. Suppose without lost of generality, f(a) < y < f(b). SInce f is cont at a, for ϵ = y−f(a)
2 > 0 there

is a δ > 0 so that x ∈ [a, b], |x− a| < δ ⇒ |f(x)− f(a)| < y−f(a)
2 , so f([a, a + δ]) is bounded above by

y. Let E = {t | f([a, t))} is bounded above by y. Consider supE, exists by Completeness. E is nonempty
t = a + δ ∈ E, bounded above by b. Let tn ∈ E, tn → supE, gives that f(tn) ≤ y. By Continuity,
f(tn) → f(supE) ≤ y.

If f(supE) = y, done. If f(supE) < y, then by Continuity of f at supE, for ϵ = y−f(supE)
2 there is a

δ̂ > 0 such that

|x− a| < δ̂ ⇒
∣∣∣∣f(x)− f(supE) <

y − supE

2

∣∣∣∣
f(x) < y+supE

2 < y for all x ∈ (supE − δ, supE + δ). Contradiction.

Ex 3.3.1. If f is continuous on [a, b] = I then f(I) = J is a closed bounded interval.

Proof. By the extreme value theorem, ∃xm, xM ∈ [a, b]. so that ∀x ∈ [a, b]. f(xm) ≤ f(x) ≤ f(xM ). This
shows that

f([a, b]) ≤ [f(xm), f(xM )]

Let f(xm) < y < f(xM ). By the IVT there is an x between xm, xM with y = f(x). This shows

[f(xm), f(xM )] ⊆ f([a, b])

which means
J = [f(xm), f(xM )]

Ex 3.3.2. f , g are cont on [a, b] with f(a) < g(a) and f(b) > g(b). Shows that ∃c ∈ [a, b]. f(c) = g(c)

Proof. Consider h(x) = f(x) − g(x). Then h(a) < 0 < h(b). By IVT, there is a c between a, b with h(c) = 0.
This shows that f(c) = g(c).
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3.4 Uniform continuity

Definition 3.4.1 (Uniform Continuity). f : E → R is uniform continuous means

∀ϵ > 0. ∃δ > 0. ∀x, y ∈ E. |x− y| < δ ⇒ [f(x)− f(y) < ϵ]

Theorem 3.4.1. If f : E → R is unif cont, xn from E is Cauchy, then f(xn) is Cauchy.

Ex 3.4.1. f(x) = 1
x is not unif cont on (0, 1)

Proof. Let xn = 1
n+1 , n ∈ N,

xn ∈ (0, 1)

xn → 0 as n n → ∞

therefore xn is Cauchy. If f(x) = 1/x were unif cont then f(xn) is Cauchy, and therefore converges. But
f(xn) =

1
1/n+1

= n+ 1 which diverges to ∞, contradiction, therefore f(x) = 1/x is not unif cont.

Theorem 3.4.2. f cont on [a, b], f is uniformly continuous on [a, b]

Theorem 3.4.3. f cont on (a, b), f is uniformly continuous iff

limx→a+ f(x)
limx→b− f(x)

}
exists

Proof. (of ⇒) Let xn ∈ (a, b) with xn → a as n → ∞. xn is Cauchy. Then f(xn) is Cauchy. Therefore there
exists L s.t. f(xn) → L as x → ∞. Let yn ∈ (a, b) with yn → a as n → ∞. Similarly, there exists K s.t.
f(ym) → K as m → ∞. Consider

|L−K| = |L− f(xn) + f(xn)− f(ym) + f(ym)−K|
= |L− f(xn)|+ |f(xn)− f(ym)|+ |f(ym)−K|

Given ϵ > 0,

∃N1. n ≥ N1 ⇒ |L− f(xn)| <
ϵ

3

∃N2. m ≥ N2 ⇒ |f(ym)−K| < ϵ

3

∃δ > 0. |x− y| < δ ⇒ |f(x)− f(y)| < ϵ

3

For this δ, there is an N3 such that

n ≥ N3 ⇒ |xn − a| < 1

2
δ

And there is an N4 such that

m ≥ N4 ⇒ |ym − a| < 1

2
δ

Then for n,m ≥ max(N3, N4)

|xn − ym| = |xn − a+ a− ym|
≤ |xn − a|+ |a− ym|

<
1

2
δ +

1

2
δ = δ
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This gives

∀ϵ > 0. |L−K| < ϵ

L = K

So for any sequence xn ∈ (a, b) with xn → a, f(xn) → L. By SCL

lim
x→a+

f(x) = L

Similarly,

lim
x→b−

f(x) = K

Theorem 3.4.4. If f(x) satisfies on E

|f(x)− f(y)| ≤ C |x− y|

Then f is unif cont on E.

Proof. Given ϵ > 0 let δ = ϵ/C > 0 and for |x− y| < δ we get

|f(x)− f(y)| ≤ C |x− y| < C · ϵ

C
= ϵ

Theorem 3.4.5. g(x) = |x| is uniformly continuous

Proof. Consider
||x| − |y|| ≤ |x− y|

Given ϵ > 0, let δ = ϵ for |x− y| < δ we get ||x| − |y|| ≤ |x− y| < δ = ϵ

Ex 3.4.2. f(x) = x log(1/x) on (0, 1). Is it unif cont on (0, 1)?

Answer.

lim
x→0+

x log

(
1

x

)
= lim

x→0+

log( 1x )
1/x

= lim
x→0+

−x−2

x−1

−x−2

= lim
x→0+

x

= 0

lim
x→1−

x log

(
1

x

)
= 0

It is uniformly continuous.

Ex 3.4.3. Use the definition to prove that f(x) = 3x2 + x+ 5 is unif cont on [1, 4]

Proof. Consider

|f(x)− f(y)| =
∣∣3x2 + x+ 5− (3y2 + y + 5)

∣∣
=

∣∣3(x2 − y2) + x− y
∣∣

= |3(x+ y)(x− y) + x− y|
= |x− y| |3(x+ y) + 1|
≤ 25 |x− y|
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Given ϵ > 0, let δ = ϵ
25 . For |x− y| < δ, we get

|f(x)− f(y)| ≤ 25 |x− y| < 25 · ϵ

25
= ϵ

Ex 3.4.4. f(x) = x is unif cont on (1, 0) since |f(x)− f(y)| = |x− y|. Given ϵ > 0, let δ = ϵ, then |x− y| <
δ ⇒ |f(x)− f(y)| = |x− y| < ϵ

Theorem 3.4.6. f, g : E → R are unif cont and bounded, f · g : E → R is unif cont.

Proof. Since f, g are bounded, ∃M,K > 0. s.t.

∀x ∈ E. |f(x)| ≤ M

∀x ∈ E. |g(x)| ≤ K

Consider

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(y)g(x) + f(y)g(x)− f(y)g(y)|
≤ |g(x)| |f(x)− f(y)|+ |f(y)| |g(x)− g(y)|
≤ K |f(x)− f(y)|+M |g(x)− g(y)|

Given ϵ > 0 there is δ1, δ2 s.t.

∀x, y ∈ E. |x− y| < δ1 ⇒ |f(x)− f(y)| < ϵ

2K

∀x, y ∈ E. |x− y| < δ2 ⇒ |g(x)− g(y)| < ϵ

2M

Let δ = min(δ1, δ2). If |x− y| < δ, we get

|f(x)g(x)− f(y)g(y)| ≤ K |f(x)− f(y)|+M |g(x)− g(y)|

< K · ϵ

2K
+M · ϵ

2M
= ϵ
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Chapter 4

Differentiability on R

4.1 Derivative

Definition 4.1.1 (Derivative). I is an open interval of R, a ∈ I, f : I → R. f is differentiable at a means

∃f ′(a) = lim
x→a

f(x)− f(a)

x− a

4.2 Differentiability

Definition 4.2.1 (Differentiability). If f is differentiable at every point of I, then f is differentiable on I. We
have f ′ : I → R. If I ′ is continuous on I then we say that f ∈ C1(I).

Definition 4.2.2. o(h) means limh→0
o(h)
h = 0, and it goes to zero faster than h as h → 0.

Theorem 4.2.1. h is not o(h)

Theorem 4.2.2. If f is differentiable at a, then

f(a+ h)− f(a)− f ′(a)h = o(h), for |h| < δ

Proof.

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= lim

h→0

(
f(a+ h)− f(a)

h
− f ′(a)

)
= 0

Remark 4.2.1. f(a+ h) = f(a) + f ′(a)h+ o(h)

Theorem 4.2.3. If ∃m. f(a+ h)− f(a)−mh = o(h), f is differentiable at a and f ′(a) = m

Proof.

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

f(a+ h)− f(a)−mh+mh

h

= lim
h→0

(
o(h)

h
+m

)
= m

25
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Theorem 4.2.4. f differentiable at a implies f is continuous at a

Proof. Note that

lim
x→a

f(x) = f(a) ⇐⇒ lim
x→a

(f(x)− f(a)) = 0

Consider

lim
x→a

(f(x)− f(a)) = lim
x→a

f(x)− f(a)

x− a
· (x− a)

= f ′(a) · 0 = 0

Remark 4.2.2. If f is not continuous at a, then f is not differentiable at a

Ex 4.2.1. f(x) = |x| is not differentiable at x = 0.

Proof. limh→0
f(h)−f(0)

h = limh→0
|h|
h , does not exist.

Ex 4.2.2. f is not differentiable at x = 0.

f(x) =

{
x sin(1/x) x ̸= 0

0 x ̸= 0

Ex 4.2.3.

f(x) =

{
x2 sin(1/x) x ̸= 0

0 x = 0

Answer. At a = 0, limh→0
h2 sin(1/h)

h = limh→0 h sin(1/h) = 0. But f /∈ C1(R).

Theorem 4.2.5. f, g differentiable at a implies f + g, fg are differentiable at a. Moreover

(f · g)′(a) = f ′(a)g(a) + f(a)g′(a)

Ex 4.2.4. True or False. f = g2, f is differentiable on [a, b] implies g is differentiable on (a, b).

Answer. False. Let

g(x) =

{
1 x ∈ Q
−1 x /∈ Q

g is nowhere continuos so nowhere differentiable. But f(x) = 1 and differentiable on [a, b].

Ex 4.2.5. True or False. f is differentiable on (a, b] and

f(x)

x− a
→ 1 as x → a+

then f is uniformly continuous on (a, b)

Answer. True. limx→a+ f(x) = limx→a+
f(x)
x−a (x − a) = 1 · 0 = 0. Since limx→b− f(x) = f(b). By uniformly

continuous theorem, f is uniformly continuous on [a, b].
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Theorem 4.2.6. For f(x) = xn, n ∈ N. f ′(x) = nxn−1

Proof.

f ′(a) = lim
x→a

f(x)− f(a)

x− a

= lim
x→a

xn − an

x− a

= lim
x→a

(x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

x− a

= lim
x→a

(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

= an−1 + an−2 · a+ · · ·+ a · an−2 + an−1

= nan−1

f ′(x) = nxn−1

Theorem 4.2.7. f(x) = 1
xn = x−n, n ∈ N, x ̸= 0. f ′(x) = −nx−n−1

Proof.

f ′(a) = lim
x→a

f(x)− f(a)

x− a

= lim
x→a

1
xn − 1

an

x− a

= lim
x→a

−(xn−an)
anxn

x− a

= lim
x→a

−(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

anxn

=
−nan−1

a2n

= −na−n−1

f ′(x) = −nx−n−1

Theorem 4.2.8. f : (0,∞) → R, f(x)− f(y) = f
(

x
y

)
, f(1) = 0. Then

(a) If f is continuous at 1, f is continuous on (0,∞).

Proof. Since f is continuous at 1,

∀ϵ > 0. ∃δ > 0. (|x− 1| < δ ⇒ |f(x)− f(1)| < ϵ)

Let a ∈ (0,∞), consider

|f(x)− f(a)| =
∣∣∣f (x

a

)∣∣∣ < ϵ when
∣∣∣x
a
− 1

∣∣∣ < δ1

Given ϵ > 0, let δ = aδ1. If |x− a| < δ then f(x)− f(a) < ϵ
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(b) If f is differentiable at 1, f is differentiable on (0,∞).

Proof. Since f is differentiable at 1

f ′(1) = lim
x→1

f(x)− f(1)

x− 1
= lim

x→a

f(x)

x− 1

Let a ∈ (0,∞), consider

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

f
(
x
a

)
x− a

= lim
x→a

f
(
x
a

)
a
(
x
a − 1

) =
1

a
lim
x→a

f
(
x
a

)
x
a − 1

=
1

a
f ′(1)

Definition 4.2.3 (Local Maximum and Minimum). f : I → R, I is an open interval. f has a local maximum
at c means

∃δ > 0. |x− c| < δ ⇒ f(x) ≤ f(c)

f has a local minimum at c means

∃δ > 0. |x− c| < δ ⇒ f(x) ≥ f(c)

Theorem 4.2.9. If f has an local maximum at c and is differentiable at c, then f ′(c) = 0.

Proof.

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
= lim

h→0+

f(c+ h)− f(c)

h
= lim

h→0−

f(c+ h)− f(c)

h

f(c+ h)− f(c) ≤ 0

Definition 4.2.4 (Even and Odd Function). f : (−a, a) → R. f is even means f(x) = f(−x). f is odd
means f(−x) = −f(x)

Theorem 4.2.10. f is differentiable on (−a, a). f is odd implies f ′ is even.

Proof.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

f ′(−x) = lim
h→0

f(−x+ h)− f(−x)

h

= lim
h→0

−f(x− h) + f(x)

h

= lim
h→0

f(x− h)− f(x)

−h

= lim
−h→0

f(x+ h)− f(x)

h

= f ′(x)
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Theorem 4.2.11 (Chain Rule). f : A → R, g : B → R, f(A) ⊆ B. f is differentiable at a ∈ A, g is
differentiable at b ∈ f(a). Then g ◦ f is differentiable at a and (g ◦ f)′(a) = g′(f(a))f ′(a)

Proof. By definition,

f(a+ h) = f(a) + f ′(a)h+ o(h)

g(b+ k) = g(b) + g′(b)k + o(k)

(g ◦ f)(a+ h) = g(f(a+ h))

= g(f(a) + f ′(a)h+ o(h))

Let k = f ′(a)h+ o(h)

= g(b+ k)

= g(b) + g′(b)k + o(k)

= g(b) + g′(b)f ′(a)h+ g′(b)o(h) + o(h)

= (g ◦ f)(a) + (g ◦ f)′(a)h+ o(h)

4.3 The Mean Value Theorem

Theorem 4.3.1 (Mean Value Theorem). f : [a, b] → R. f is continuous on [a, b], differentiable on (a, b). Then
there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)

b−a

Theorem 4.3.2. If f is continuous on [a, b] and differentiable on (a, b) and f ′(x) > 0 for all x ∈ (a, b) then f is
strictly increasing.

Proof. For x, y ∈ (a, b) with x < y, apply MVT to f on [x, y] ⊆ [a, b]. Then

∃c ∈ (x, y). f(y)− f(x) = f ′(c)(y − x) > 0

Theorem 4.3.3. If f is continuous on [a, b] and differentiable on (a, b) and f ′(x) = 0 for all x ∈ (a, b) then f is
a constant function.

Proof. For x, y ∈ (a, b) with x < y, apply MVT to f on [x, y] ⊆ [a, b]. Then

∃c ∈ (x, y). f(y)− f(x) = f ′(c)(y − x) = 0

Corollary 4.3.1. f, g continuous on [a, b], differentiable on (a, b) and f ′(x) = g′(x) for all x ∈ (a, b), then
∀x ∈ [a, b]. g(x) = f(x) + c.

Proof. Let h(x) = g(x)− f(x). h is continuous on [a, b], differentiable on (a, b) and h′(x) = g′(x)− f ′(x) = 0
for all x ∈ (a, b). By the previous theorem, h is a constant function. Then g(x) = f(x)+c for some c ∈ R.

Theorem 4.3.4 (Generalized Mean Value Theorem). If f, g are continuos on [a, b] and differentiable on (a, b)
then ∃c ∈ (a, b). with

(f(b)− f(a)) · g′(c) = (g(b)− g(a)) · f ′(c)

Proof. Let
h(x) = (f(b)− f(a))(g(x)− g(a))− (g(b)− g(a))(f(x)− f(a))

h is continuous on [a, b], differentiable on (a, b). h(a) = h(b) = 0.

h′(x) = (f(b)− f(a)) · g′(c)− (g(b)− g(a)) · f ′(c)

Apply Rolle’s Theorem to h on [a, b]. Then h′(c) = 0 for some c ∈ (a, b).
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Theorem 4.3.5. If f is increasing on [a, b], then for all c ∈ [a, b)

f(c+) = lim
x→c+

f(x) exists

For all c ∈ (a, b]
f(c−) = lim

x→c+
f(x) exists

When f(c+) ̸= f(c−), then f is not continuous at c. A jump discontinuity j(c) = f(c+)− f(c−).

Proof. Let c ∈ [a, b). Consider the set f((c, b)), since f is increasing , this set is bounded below by f(c). Call
f(c+) = inf f((c, b)). For any ϵ = 1

n there is a point f(xn) ∈ f((c, b)), then

f(c+) ≤ f(xn) < f(c+) +
1

n

by Squeeze Theorem, f(xn) → f(c+) as n → ∞. Given ϵ > 0 there exists N so that

n ≥ N ⇒ |f(xn)− f(c+) < ϵ|

Since xn ∈ (c, b), c < xn, f(c+) ≤ f(xn), 0 ≤ f(xn) − f(c+) < ϵ. For c < x < xn, f(x) ≤ f(xn) since f is
increasing. Then

0 ≤ f(x)− f(c+) ≤ f(xn)− f(c+) < ϵ

Let δ = xn − c, for c < x < c+ δ we have |f(x)− f(c+)| < ϵ.

Theorem 4.3.6. If f is monotone on [a, b] that f has at most a countable set of jump discontinuity.

Proof. For increasing function f , recall at a jump discontinuity, c ∈ (a, b), j(c) = f(c+)− f(c−). If there are
discontinuity at c and ∩c ∈ (a, b) with c < ∩c, f(c+) ≤ f(∩c−). For K ∈ N let Ek =

{
c ∈ (a, b) | j(c) < 1

k

}
.

If there are N then

N · 1
k
≤

∞∑
i=1

j(ci) ≤ f(b)− f(a)

⇒ N ≤ k · (f(b)− f(a))

⇒ Ek is finite

then E =
⋃∞

k=1 Ek is all jump discontinuity. E is at most countable.

Ex 4.3.1. Prove that 1 + x < ex for x > 0

Proof. Let f(x) = e2 − (1 + x), f(0) = 0, f ′(x) = ex − 1. f ′ is continuous and differentiable on [0,∞).
f ′′(x) = ex > 0 for all x ∈ R. g is strictly increasing, for 0 < x, g(0) < g(x), 0 < ex − 1, then f is strictly
increasing. For 0 < x, f(0) < f(x), ex − (1 + x) > 0, ex > 1 + x.

Ex 4.3.2. Prove that (1 + x)x ≤ 1 + αx, for 0 < α ≤ 1 and x ≥ 0.

Proof. When α = 1, 1+ x ≤ 1+ x. Set f(x) = (1+ x)α is continuous and differentiable for 0 < α ≤ 1, x ≥ 0.

f ′(x) = α(1 + x)α−1

For x > 0, apply MVT for f on [0, x].

∃c ∈ (0, x). f(x)− f(0) = f ′(c) · x
(1 + x)α − 1 = α(a+ c)α−1 · x < α · x

(1 + x)α < α · x
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4.4 Taylor’s Theorem and L’Hospital’s Rule

Observe If f is differentiable on (a, b) and x, x0 are two points from (a, b), apply MVT to f . From x to x0,
then ∃c ∈ [x, x0]. f(x)− f(x0) = f ′(c)(x− x0), or f(x) = f ′(c)(x− x0) + f(x0).

Definition 4.4.1 (Taylor’s Polynomial). If f is n ∈ N times differentiable on (a, b) then

Pn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k

is the Taylor’s Polynomial of degree n.

Theorem 4.4.1 (Taylor’s). If f is n+ 1 times differentiable on (a, b) then

f(x) = Pn(x) +
fn+1(c)

(n+ 1)!
(x− a)n+1︸ ︷︷ ︸

Rn(x)

where Rn(x) is the error in approximating f(x) by Pn(x).

Proof. Let

G(t) = f(x)−
n∑

k=0

f (k)(t)(x− t)k

k!

is continuos and differentiable on the interval from x to x0. Then

G(x) = 0, G(x0) = f(x)− Pn(x), G
′(t) = −f (n+1)(t)

n!
(x− t)n

Now let

H(t) =
(x− t)n+1

(n+ 1)!

is continuos and differentiable on the interval from x to x0. Then

H(x) = 0, H(x0) =
(x− x0)

n+1

(n+ 1)!
, H ′(t) = − (x− t)n

n!

Apply the GMVT to G,H on the interval from x to x0. Then there exists c ∈ (x, x0) such that

(G(x)−G(x0))H
′(c) = (H(x)−H(x0))G

′(c)

(f(x)− Pn(x))
(x− c)n

n!
=

(x− x0)
n+1

(n+ 1)!
· f

(n+1)(c)

n!
(x− c)n

f(x)− Pn(x) =
(x− x0)

n+1

(n+ 1)!
· f (n+1)(c)

f(x) =
(x− x0)

n+1

(n+ 1)!
· f (n+1)(c) + Pn(x)
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Ex 4.4.1. f(x) = ex, x0 = 0

Answer.

Pn(x) =

n∑
k=0

f (k)(0)

k!
xk

=

n∑
k=0

xk

k!

For some c ∈ (0, x)

Rn(x) =
f (n+1)

(n+ 1)!
xn+1 =

ecxn+1

(n+ 1)!

If −1 ≤ x ≤ 1, then

|Rn(x)| ≤
e

(n+ 1)!
< .000009

Ex 4.4.2. f(x) = sinx, x0 = 0

Answer.

P2n+1(x) =

n∑
k=0

(−1)k
x2k+1

(2k + 1)!

R2n+1(x) =
f (2n+2)(c)

(2n+ 2)!
x2n+2 (for some c ∈ (0, x))

For −1 ≤ x ≤ 1, when n = 4

|R9(x)| < .00000003

Ex 4.4.3. What is

x− x3

3!
+

x5

5!
− · · · − x4n−1

(4n− 1)!

Answer.
sin(x) = P4n−1(x) +R4n−1(x)

Ex 4.4.4. f(x) = log x, x = 1

Answer.

f (k)(1) = (−1)k+1(k − 1)!

Pn(x) =

n∑
k=0

f (k)(1)

k!
(x− 1)k

=

n∑
k=1

f (k)(1)

k!
(x− 1)k

=

n∑
k=1

(−1)k+1

k
(x− 1)k

Rn(x) = fn+1(c)(n+ 1)!(n− 1)n+1

=

(−1)n+2n!
(n+1)cn+1

(n+ 1)!
(x− 1)n+1

=
(−1)n+2

(n+ 1)2cn+1
(x− 1)n+1
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Theorem 4.4.2 (L’Hospital’s Rule). I is an open interval, a is in I and is an endpoint of I. f, g are differentiable
on I with f(x) ̸= 0 ̸= g′(x) for all x ∈ I.

lim
x→a
x∈I

f(x) = lim
x→a
x∈I

g(x) = 0 or ∞ =⇒ lim
x→a
x∈I

f ′(x)

g′(x)
= B ∈ R̄ = lim

x→a
x∈I

f(x)

g(x)

Proof.

(Easy case) a ∈ R
lim
x→a
x∈I

f(x) = lim
x→a
x∈I

g(x) = 0

Define f(a) = g(a) = 0. Then for any x ∈ I, f, g are continuos and differentiable on the interval from
a to x. Apply GMVT to f, g on the interval from a to x, then there exists c ∈ (a, x) such that

(f(x)− f(a))g′(c) = (g(x)− g(a))f ′(c)

f(x)

g(x)
=

f ′(cx)

g′(cx)

lim
x→a
x∈I

f(x)

g(x)
= lim

x→a
x∈I

f ′(cx)

g′(cx)
= lim

cx→a
x∈I

f ′(cx)

g′(cx)
= B

(Harder case) a = +∞
lim
x→∞

f(x) = lim
x→∞

g(x) = 0

Given ϵ > 0, ∃N > 0 so that

x > N ⇒ |f(x)− 0| < ϵ

⇒ |g(x)− 0| < ϵ

So for y = 1
x

y <
1

N
⇒ ⇒

∣∣∣∣f (
1

y

)
− 0

∣∣∣∣ < ϵ

⇒
∣∣∣∣g(1

y

)
− 0

∣∣∣∣ < ϵ

lim
y→0+

g(1/y) = 0 = lim
y→0+

g(1/y)

lim
y→0+

f ′(1/y) · 1
−y2

g′(1/y) · 1
−y2

= lim
y→0+

f ′(1/y)

g′(1/y)
= B


