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Chapter 1

1.1 Euclidean Space R"

FER" &= (T, %2 Ts,...,00)
& = (1,0,0,...,0)
& =(0,1,0,...,0)
¢5 = (0,0,1,...,0)
&, =(0,0,0...,1)
@+b=(di+by,ds+bs,... d5+0b)
ad = (adi, ady, . .., Qdy,)
@-b=diby + dsbs + -+ by

@ =/

—2 —2 — 2
al +a2 ++an

=vVa-a

Gl= Vi1
1 1=
€ € = =,
0 i#j
10 ... 0O
€ - 6] = 01 ... 0 = Txn
2
fi&)=\|a—tb| >0

- N 412
|d’\2—t6-b—tb~d’+t2‘b’

= 412
:|c‘i\272t6~b+t2‘b‘

(Addition)
(Scalar Multiplication)
(Dot Product)

(Norm)

(Kroneker delta)

When b #£ 0, f (t) is a parabola of ¢ opens upward, which has minimum when first derivative is 0.

= 412
25~b+2t‘b’ -0
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—».l_)’
&S] =0
g
2
o db, - [a-b| 42
b b
_,._'2
R
g
e Th oy
la| |b
a-b=|dl ‘5’ cos 6
@-b=0when0=r/2
Cross product
In R3,
@ x b= € (azbs — azba) + €3(azby — arbs) + & (arby — aghy)
G-axb= a1€1(a2bs — aszba) + azés(asby — arbs) + aséz(arba — azby) =0
alaxb
G- axb=0
blaxb
@x b| = |a| |b|sin®

1.2 Subsets of R"

Definition 1.1 (Balls).
B(d,r)={Z||#—dl<r}, r>0

Definition 1.2 (Interior Point S™!). & is an interior point of S means B(Z,r) C S, denoted with S™.
Definition 1.3 (Boundry Point 05). Z is a boundary point of S means
Vr>0.B(Z,r)NS #o
B(&r)NS°+£ o
Denoted with 05S.
Remark 1.1. 95 = 05°

Definition 1.4 (Open Set). S is open when it contains none of its boundary points. Every point of S is an
interior point.

Definition 1.5 (Closed Set). S is closed when it contains all of its boundary points. S is open.
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Definition 1.6 (Closure S). S = SUHS
Ex 1.1.

S={(z,y) eR* |2 +y* <1}\{(0,9) |y <0}

B((0,0),1)

S is an open set.

08 ={(z,y) | 2*+y* =1} U{(0,y) | -1 <y <0}
S={(z,y) | 2*+y* <1}
St = B((0,0),1) = {(z,y) | 2* +y* < 1}

1.3 Continuity

Definition 1.7 (Continuity).

for @ € u, fis continuous at @ means

— —

Ve > 0.3 > 0. f(un B(d,0)) € B(f(a),e)

Ex 1.2.

2
Answer. lim(x’y)ﬁ(o,o) % =0= f(O, 0)

Proof. Consider

.’EQ 1‘2 1.2_~_ 2
y 0’— vl ( y)ly\:|y|: /R < 2T

22492 | 224y T a2 42

2 . 2
Because /22 +y? — 0 as (z,y) — (0,0), by squeeze theorem, % - 0‘ — 0, that is, Ififyg — 0 as

(z,y) = (0,0) O

Ex 1.3.

2

s w00
fwy) {o (e.5) = (0.0)

Answer. Approach (0,0) along y = ma?, lim = Limit DNE.

_m _
14+m?2*

Theorem 1.1. If f : R — R™ is continuous on R"™ and u C R™ is open then f~1(u) C R™ is open.
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1.4 Sequence in R”

Definition 1.8 (Sequence). A sequence in R"is ), k=1,2,3,....

Definition 1.9 (Limit). 7, — L as k — inf means
Ve>O.EIN.kZN:>‘fk—Z_}" <e

Theorem 1.2. If ¥ € S C R", then there is a sequence in S that converges to .

Proof. S=SUOS.If ¥ € S then take 7}, = ¥ then & — 7 as k — oo. Otherwise & ¢ S and & € 9.5, then for
k=1,2,3,...,B(&+)NS#, B(Z 1)N5 #,s03% € B(Z,1)US., gives that [T}, — Z| < + — 0 as
k — oo. O

Theorem 1.3 (B-W). Every closed sequence in R has a convergent subsequence.

1.5 Properties of Sets

Definition 1.10 (Compactness). If S € R" is closed and bounded, then S is compact.
Theorem 1.4. S € R"™ is compact iff every sequence from S has a convergent subsequence with limit in S.
Theorem 1.5. S € R™ is compact, f : S — R™ is continuous, then f(S) is compact.

Proof. To see that f(S) is compact, let y, = f(5) be a sequence so there are x;, € S with f(x)) = yi. There
is a sequence z, — = € S as [ — oco. By continuity, f(zg,) — f(x) as ! — oo, or yr, — y as | — oco. So f(5)
is compact. O

Corollary 1.1. If f : Scompact — R is continuous, then f attains its max and min:
Fxm, xar € 8. f(vm) < f2) < flowmr)

Proof. f(S) is compact, closed and bounded, meaning sup f(S) and inf f(S) exists. Since f(S) is closed,
sup f(S) € f(S) and inf f(S) € f(5). O

Definition 1.11 (Connectness). S is disconnected means S = UUV, where U and V' are nonempty, unv =9
and U NV = @. If S is not disconnected, then S is connected.

Definition 1.12 (Interval in R). I € R is an interval means if a,b € I, a < b then (a,b) C I.
Theorem 1.6. The connected sets in R are intervals.
Theorem 1.7. S € R" is connected. f : S — R™ is continuous. Then f(S) is connected.

Proof. If f(S) is not connected, there’s disjoint set U and V in f(S). Then f~1(U) and f~!(V) are disjoint
inSand S= f"Y(U)U f~Y(V), which contradicts the connectedness of S. O

Definition 1.13 (Path Connectness). Va,b € S. Ifcont : [0,1] = S. f(0) =a, f(1) =b

Theorem 1.8. If S is connected and open in R™, then S is path connected.

Theorem 1.9 (Extreme Value Theorem). K C R" compact, f : K — R, then f attains its maximum, or
X, T € K. VZ € K. f(Z) < f(@) < f(Xon)

Theorem 1.10 (Intermediate Value Theorem). S C R"™ is connected, f : S — R is continuous, then for any
a,b € S and any value c between f(a), f(b), there is x € S with f(z) = c.
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Ex 1.4. S C R? connected, (—1,2) € S, (3,1) € S. Show that there is a point on the graph that is in S.

Proof. Define f(z,y) = y — 2® is continuous on S connected. f(—1,2) = 3, f(3,1) = —26. By IVT, 3(z,y) €
S. f(x,y) =0,y —a® = 0. O

Theorem 1.11. S = {|Z| =1}, f : S — R continuous on the sphere, then
AZ e S. f(&) = f(—2)
Proof. Set g(Z) = f(&) — f(—Z) is continuous on S. If there is a point p € S with g(p) > 0,
9(=p) = f(=p) = f(P) = =(f(®) = f(=p)) = —g(p) <O
By the IVT, there exists # € S with g(Z) = 0, therefore f(Z) = f(—2). O
Definition 1.14 (Uniform Continuity). S C R™, f: S — R", f is uniformly continuous on S means
Ve>0.36 >0.VZ € S. f(B(Z,0)NS) C B(f(T),€)
Ex 1.5. Prove if | f(z) — f(y)| < 10|z — y|%for all z,y € S then f is unif. cont on S.
Proof. Note
|z —y| < 6= 10|x7y|% < 1062
1007 < e

€\2
i< (55)
< 10
Givene>01et0<5<(1%)2. For z,y € S with |z — y| < § we get

1f(2) = f(y)| < 10|z —y|? < 106%

10- &

=€
10

O

Remark 1.2 (Lipschitz Functions). If f : S — R™ satisfies Vx,y € S. |f(x) — f(y)] < C|z —y|, then fis
uniformly continuous.

Theorem 1.12. If S C R™ is compact and f : S — R™ is continuous, then f is uniformly continuous.
Lemma 1.1 (Heine Borel). Every cover of S by open sets has a finite subcover.

Proof. Given e > 0, by continuity at z, for every « € S there is a ball B(z, J,) so that

Vy € B(x,02). [f(x) = fly)l <€

Now S C U, cq B (2, %), by H.B,

€S

l
dry,...,2;. 5 C UB(L,(;)

i=1
Let z,y € S with |z — y| < § = min;—; _;%:/2. Now z € S so x € B(z;,%:/2)

ly, il <y —a| + |z — 2

O n Os; _
y € B(wi, 00,) |f(2) = fFW)I< [f () = flaa)| + [ (y) = f ()]
<e€/24+¢€/2=¢






Chapter 2

Differential Calculus

2.1 One variable

Definition 2.1 (Derivative). I be an open interval in R, a € I, f : I — R, fis differentiable at a means

f/(a) — lim f(a+ h) — f(a’)

h—0 n

exists

this is equivalent to
Im. f(a+ h) = f(a) + mh+ o(h)

where m = f'(a) and o(h) means limj,_q 0(:) = 0. Think of h as the variable, then f(a-+h) is approx f(a)+mh

Theorem 2.1 (Product Rule). If f, g are differentiable at a, then f - g is differentiable at a and
(f-9)(a)=(f"-9)(a) +(f g')(a)
Proof. We know

fla+h) = f(a)+ f'(a)h +o(h)
= g(a) + g'(a)h +o(h)

= (9(a) + ¢'(a)h + o(h))
= f(a)g(a) + f( )g'(a)h + f(a)o(h)
+ f'(a)g(a)h + f'(a)g (a)h® + f'(a)o(h)h
+o(h)g(a) + o(h)g'(a)h + o(h)o(h)
= fla)g(a) + (f(a)g'(a) + f'(a)g(a))h + o(h)
O
Theorem 2.2. [ open interval, a € I, f: I — R.
1. f has a local maximum at a means Vz € B(a,9). f(z) < f(a), and f'(a) =
Proof.
fla+h)= f(a) + f'(a)h + o(h)
Fla+h) = f(a) = F'(a)h +o(h) <0 (For [1] < 6)
f'(a) + O(h>§0 (h > 0)
f'(a) + 0( )5 (h < 0)
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With h — 0

O

Theorem 2.3 (Rolle’s). f : [a,b] — R continuous, f differentiable on (a,b) and f(a) = f(b) then Jc €
[a,b]. f'(c) =0

Proof. By the EVT, f has a max and min at zps, ... If zpr > f(a), then f has a local maximum at z,,, so
¢ = f'(xp) = 0. If 2., < f(a), then f has a local minimum at z,,, so ¢ = f'(z,,) = 0. Otherwise, f is
constant, Vz € (a,b). f'(z) = 0. O

Theorem 2.4 (Mean Value Theorem).

Proof. f :[a,b] — R continuous and differentiable on (a, b), then

Je € (a,b). f'(c) =

or

Jc € (a,0). f'(¢)(b—a) = f(b) — f(a)

Corollary 2.1. f is differentiable on (a,b)

1. IfVz € (a, > 0 then f is increasing on (a, b).

() < 0 then f is decreasing on (a,b).

/

b). f
. IfVz € (a,b). f
). f
. IfVx € (a,b). f

( (z)
2 ( )
3. IfVx € (a,b x) > 0 then f is strictly increasing on (a, b).
4 ( x) < 0 then f is strictly decreasing on (a,b).
5 ( ) =

(
(
(
. IfVz € (a,b). f'(x) = 0 then f is constant on (a, b).

Theorem 2.5. If ' is bounded on interval S C R then f uniformly continuous on S.

Proof. For x,y € S, apply the MVT to f on [z, ]

IM.Vz € S. |f'(z)| <M
3z € (z,y). fly) — f(x) = f(c)(y — )
|f(y) = f(@)] =1 (c)] ly — ]
<Mz —y|

f is Lipschitz, so f is uniformly continuous. O

Theorem 2.6 (Generalized Mean Value Theorem). f,g : [a,b] — R continuous and differentiable on (a,b),
then

Je € (a,). (f(b) = f(a))g'(c) = (9(b) — g(a)) f'(c)
Theorem 2.7 (L’'Hospital’s Rule). f,g : [a,b] — R continuous and differentiable on (a,b), ¢’(x) # 0 on (a,b),

then )
tim 2@y L)

g(x) ~ ama g'(x)
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> Tosin (1) x#0

x

, find f'(z) forall x € R.
0 z=0

Ex 2.1. f(z) = {

Answer. For x #£ 0,

(@) = (2 + a)z' sin (;) 2o (i) <$12>
na() ()

forz =0
— £(0)
o g £ £
F1(0) = lim A
. h?*sin (+)
h—0 h
1
= lim AT sin () =0 (By Squeeze Theorem)
h—0 h
Check for continuity of f’ at 0
lim f'(z) = lim (2 + a)z' ™ sin 1) oo (L
x—0 x—0 x x

=0
Theorem 2.8. If f is differentiable on a set, then it’s continuous on that set, and f € C.

Theorem 2.9. f is twice differentiable on I, a € I. Prove that

lim fla+2h) —2f(a+h)+ f(a)
h—0 h?

= f"(a)

Proof.

fla+2h) —2f(a+h)+ f(a) lim 2f"(a+2h) —2f'(a+ h)

lim =1

h—0 h2 h—0 2h
/ ot
:hmf(a+2h) f(a+h)
h—0 h

= lim 2f"(a + 2h) — f"(a+ h)
h—0

f'la+2h) = f'(a+h) flat2h)+ f(a) | fla) = ['(ath)

= lim

lim

h—0 h h—0 h h
iy Pt 4 @) flat k)~ f(@)
h—0 2h h
=2f"(a) — f"(a)
= f"(a)
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Ex 2.2. lim, o (1+2)°

Answer.

CHAPTER 2. DIFFERENTIAL CALCULUS

2.2 Vector Value Functions

Definition 2.2.

Theorem 2.10 (Product Rule).

Definition 2.3. f,g: I - R? f:

fxg

(fxg)
(f293 — f3g2)

(1+3) ==rs(143)
log(14+—-) ==xlog|1+—
T
_log 1—&-%)
= 1
. 1\* . 1
xh_)rrgolog <1+x> xh_)rrgc (1+%)
= lim
=1
fiI—R"
F£) = (A1), .., Falt))
F1) = (F1(1), -, £(1))

Z fi)gi(t) + fi(t)gi(t)

- Z Fl(t)gi(t) + Z fi(t)gi(t)

(F'a)(®) + (F)(0)

(flaf27f3)?§: (91792793);

= 1(f293 — f392) + €2(f3g1 — fi193) + €3(f192 — fa91)
= (fa93 — f392, f391 — f193, f192 — fag1)
= ((fag3 — f392)", (f3g1 — f193)", (fr92 — fa91)")

= f293 + f295 — f392 — f395
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2.3 Partial Derivative

Definition 2.4 (Partial Derivative). f:R"™ — R, f(z1,za,...,zp).

0 . . fE+hE) - f(@)
gjf(x)*%{)% ijz

eTYZ

Ex 2.3. Flnd 31 m

Answer.
(1.2 + y2 + zQ)nyzyZ — Yz

($2+y2+22)2

f(O+h) - f(0,0)

9,£(0,0) = lim f0+h) — £(0,0) _

h
But f(z,y) is not continuous at (0, 0).

Definition 2.5 (Gradient). S CR™, Sisopen, a € S. f: S — R, f is differentiable at @ means
IFeR" f(@+h)= f@+¢ h +o(h)
————

linear in hy,..., hn
Then ¢ = V f(@).
Theorem 2.11. If f is differentiable at d then

vf((_i) = (8931 f(a)7 ceey aacnf(a))

Proof.

h—0 h
— lim V(@) - hé; + o(hé;)
h—0 h
= V@) + im 21
=Vf(a)-e;

O

Theorem 2.12 (Chain Rule). Let §(t) : R — R”, f(z) : R® = R, fog(t) = f(gt) : R - R Ifgis
differentiable at a and f is differentiable at b = g(a), then f o § is differentiable at a and

(fog)(a) =Vf()-g(a)

Proof.
gla+h) = g(a)§ (a)h + o(h)
Fb+E) = f(b)+VID)  k+o(k)
(fog)la+h)=f(gla+h))
= f(g(a) + g (a)h + o(h))
T F

Fb) +Vf(b)-F(@)h+Vfb) - o(h)+ o(h)
~~ N———
(fog)(a) (fog) (a)
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—

Recall that o(F) = ¢(F) k’ where (k) = 0ask — 0
e(F) ]k(
lim 0
h—0 h

O
Ex 2.5. § = {Z € R" | F(Z¥) = 0}. It’s a surface in R". Take @ € S, F'(d@) = 0. Take any curve in S through da.
Take §(t),g(t) = a,t € [—1,1], then for all t € [-1,1], F(g(t)) = 0.
d g —
SR(() =0
VF(g(t) -3 (t) =0
VE@)-g(t)=0

g (t) is orthogonal to VF(a), where ¢'(t) forms a tangent plane, and VF'(a) is normal to the tangent plane, or
S at d.

Ex 2.6. 2% + % + % = 1. What is the normal to the ellipse at the point (0,0,4)?

Answer.
2 2
2, Y z
Z 42 1=0
T
F(z,y,2)

VF(0,0,4) = VF(0,0,4)| 0,4
2y z
= 2 - -
( © 79 ’8)
1
_ (0,0,2)

(0,0,4)

And the tangent plane will be

Recall 2.1. Line segment from @ to b.

t=01-ta+th 0<t<1

Definition 2.6 (Convex set). S C R", S is convex means
Va,beS. Lz CS

Ex 2.7. Balls are convex
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Theorem 2.13. If S is convex, open and f is differentiable on S with
vZ e S. |V(@)| <M

then
VE,d. |f(Z) — f(§)| < M [T — ]

Proof. Let 7, € S,1(t) = T+ t(§ — Z),0 < t < 1 f(I(t)) is diff on (0, 1), cont on [0, 1]. By the MVT,

FG1) ~ FE0) = & T =i, (1~ 0)
& i) = V(i) )
= V(@) - )
F(@) = F@)] = VD) - (7~ )
) .

Theorem 2.14. If S is open, connected and V f (%) = 0 for all ¥ € S then f(Z) is constant.

Proof. For any line segment from @ to b in S by previous theorem.

-

B - 1@

= @)=

Open connected S € R™ are path connected, even step path connected.
Theorem 2.15 (Implicit function theorem). One Equation

F(x1,x0,...,2n,y) =0
think y(&) as a function of x, then

2 S0 (2) - (2) -

=1

0, F oy
Z1

Fp +ye, Fy =0

—F,,

?

Y

0, F+ 2= — 9

Yo, =
Ex 2.8.
22 p? 2 =1
P22 —1=0
[y S ——
F(x,y,2)
think z(y, z)
or —-F, 2y y
oy F, 2z =z
ox z

ox z
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think y(x, z)

Theorem 2.16 (Two equations in 4 unknowns).

F(xayﬂhv) =0
G(z,y,u,v) =0

Think u(x,y), v(z,y), find ug, uy, vz, vy. Take O, of both equations.

F,+ Fu, + Fy,u, =0
Gy + Guuy + Gyo, =0

&l e &l -1

F, F,| |ug
G, Gyl |vg

Ug

—
—

S

|

SR

Vp = —

NEfRE RmRA

K&K N

Q
IS
|
Q|
B=
zlQ

2
&
2

s 2
RN
Q\_/
Q

D
S
\
@
0
L)

3
B
Q

< 8
I
Qv
&

Ex 2.9.

x =rcosf

y=rsinf
F(z,y,r,0) =z —rcosd =0
G(z,y,r,0) =y —rsinf =0
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or or 90 90,
What are 5, 5y B> By

9(FC) 1 rsinf
o ~ @) 0 —rcosf
Ox AF.G) —cosf rsinf
o) ’—sin@ —rcosf
B 7 cos 6
~ rcos20 +rsin®6
__rcost
o
=cosf
B T
0 rsinf
or ‘1 —rcosf
dy
_ rsind
or
=sinf
w00 ]
00 ~B(nz) —sinf 0
ox  AEG) r
o(r,0)
_ —sind
o
_ —rsinf
r2
-__ Y
- $2+y2
(F.) _ —cosf O‘
00 - 8(7"13;) —sinf 1
oy 2EG) r
a(r,0)
_ —cosf
T or
__rcosd
r2
I
o

Vﬁ(x,y) = <9Ia0y>

_ —Y z
- $2+y2’$2+y2

1

,y) =0

17
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2.4 Higher Order Partial Derivative
Ex 2.10.
u = ze¥?
Oyu = e¥*
Upy = OyOzu = ze¥* = 0,0,u
Ex 2.11. There is an f(z,y) so that mixed partials can depend on the order, i.e.,

9y0:£(0,0) # 0.9, f(0,0)

Theorem 2.17. fon S C R, open, a € S. All second order partial derivatives of f, 0;f, 0;0; f,0;0; f exists in S
and if 9;0; f, 9;0; f are continuity at d, then

0,0, f(@) = 0,0, f(a)
if f € C*(S9), then any k derivative are not depend on the order.
Remark 2.1. f € C?%(S) then any mixed partial do not depend on the order of differentiation.

Definition 2.7 (Laplacian in R?). u: S — R, S open, u € C?(S), then

n
Ay = E Ug, a;
i=1

Solutions to Au = 0, u is called harmonic.

Ex 2.12. In R?, uyy +uyy = 0; in R3, wyy +uyy +u,, = 0. Rewrite in polar coordinate and spherical coordinate.
Idea: f(x,y), fos + fyy, but  =rcos@,y =rsinf,u = f(rcosf,rsind).

or y
Ur:fz'a"f'fy'a

= fycosf + f,sind
Upr = (fzw cOSO + frysinf) cos + (fyz cosd + fyysind)sind
or y

= —rcosff, +rcosf,
Urg = —sin@f, + cosOf, + cosO(fz)e +sinb(fy)e
= —sinff; + cosOf, + cosO(—rsinbfy, + rcosbfy,) +sin(—rsinb fo,, + rcosbfy,)
ugp = —rcosffy, —rsinbf, —rsind(fy)e + rcosf(fy)e
= —rcos@f, —rsinff, —rsin@(—rsinbf,, + rcosbfyy,) + rcosd(—rsinb f,, + rcosff,,)
Ugo 1

fow + fyy = Urr + = + ~uy (Polar Coordinate)

Recall. In polar, x = rcosf,y = rsinf. In spherical, x = rsin ¢pcos6,y = rsin ¢psin b, z = r cos ¢.
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u= f(z,y,2) x=rcosb,y=rsinfd, z=z
1 1
fzz+fyy+fzz:Urr+;ur+ﬁu96+uzz
z=pcos¢p r = psing

tanqﬁ:f
z
¢ = tan~? (f)
z
> O
p= T’2+22 lzz
ar p
6p+ 00
Up = Wp—=— + Wop——
T o T or
p+ 242
. cos ¢
= w,sin ¢ + wy P
w,  Wpsing 4wy <E ¢
r psin ¢
1 1
= ;w,, + ?w(ﬁ cot ¢

1 2 1 1
f.’l;.’L'+fyy+fZZ:wpp+ﬁw¢¢+;wp+ 09—|- w¢cot¢

p? p2sin ¢
Definition 2.8 (Multi-Index Notation). @ = (ay, ..., ay,), each «; is an index

a __ oy Qas o
0% = 0,072 ...07"

al = aqlag! ... ayp!

isan |d| = aq + ag + - - - + o, derivative. For ¥ € R", ¥ = (z1,22,...,Tp)
=0l @y .0 Qn
Y =afad? . ap

Ex 2.13. @ = (3,2,1), f(z,y,2) = 23y*2.

0% = 92020.4%y*»
= 9302x%y*
= 02122°%y°
= 72y

Ex 2.14. Binomial expansion:

Let & = (j,k — j), then

19

(Cylindrical Coordinate)

(Spherical Coordinate)
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Which is also true for & € R™

Ex 2.15. f(x,y,z2)

@ =2
(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)
g( )2 2O 2 B2O) f oo H0)ay + 0,0 F(O)ax + 8,0 (O)yz

QL =
Il

2+ 91 Y+ 9]

aéx

2:5W()
al

\a|=2
1 2 1 2 1 2

= 7fxm1' + *fyyy + afzzz + fmyl'y + f:bzxz + fyzyz
1

= 7[fzzx2 + fyyy2 + fzzz2 + meyxy + 2fa:zirz + 2fyzyz]

_1'—»T 2o
—afox

1 fra fmy fzz &€
2'[.%2/2] Jyr  fyy  Jyz Yy
fzx fzy fzz 4
2.5 Taylor’s Theorem

Theorem 2.18 (Taylor’s). f:1— >R,a € I, f € C*(I), then
fla+h) = aMm Rax(h)

f(])
Z
j_

Ror(h)=o (h’“)

If f € C**1(I) then there exists ¢ between o and h such that

(k+1)
Rup(h) = f @ _Eal;" ) k41

Remark 2.2. If f € C!
fla+h) = f(a) + [/(a)h+ o(h)
—— ~~~

P, 1(h) Ra,1(h)
Iffec?
2
fla+h) = f(a) + f'(a)h + ") h* + o(h?)
2! N
Pa.a(h) Ry, 2(h)

Theorem 2.19. If f'(a) = 0 and f"(a) > 0,

fla+m) = fla) + 02 4 o2)

fla+h) > f(a) for all |h| small. f has a local minimum at a.
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Ex 2.16 (Important Functions at a = 0).

J

. x
e’ = Z 7 +Ro,10(x)

j=0 "
——
Po,10(x)
22 10
:1+$+E+"'+T0!+R0,10(I)
) 2 2 2T 2
Sln(0+fl7) =T — §+§ — ?+§+R09(I’)
Po,g(:v)
2 ozt S
cos(0+2)=1- o0 + TRl +Ro6(x)
Po6(x)
1
i l+az+a2>+ 42" +Ro ()

PO,n("L')

Ex 2.17.

. 2% —sin(2?)
lim ———~%
=0 4(1 — cos )
% — (:c2 - (%ﬁ + o(mS))
= lim 5
e o= 5+ o))
gy /3 0@
a0 2% /a1 + zt0(22)
1/31 0(16) z6
= lim M
x—0 1/91 4 o(”) /46
21
S 313
Definition 2.9 (Lagrange Multipliers). Find maximum or minimum of some function subject to a constraint
G (&) = 0, which is a plane. If V f is not in the direction of VG, then part of V f is in the tangent plane and f
increase in that direction and decrease on the opposite direction, so no max or min at such a point. Therefore,
look for points where V f = AVG.

Ex 2.18 (Isoperimetric Problem). Find the maximum volume of a box with surface area A.
Answer. f(z,y,2) =V =ayz, A = 2xy + 222 + 2yz,x,y,2 > 0.

G(z,y,y) =2xy + 2zz + 2yz — A
Vf=AVg
fo=AGe = yz =2y + 2)
fy =AGy = 2z =2X\(z + 2)
f: = )MG, = 2y =2\ (z +v)
xyz = 2\(xy + x2)
xyz = 2A(xy + y=2)
xyz = 2A(xzz + yz2)

TYz
Kza:y—&—xz:xy—i—yz:xz—i—yz
A
f:y:z: _—

6
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Suppose z <y < z

[A
2x2§2xy§A:>x§ )

2z <2xz2 < A= yz <

V=ayz </ =

Volume is bounded, at the max Vf = A # G. So V = (%)% is the maximum.

Ex 2.19. Find the minimum surface area of a box that has volume V.

IS
SIS

V =2ayz
G(z,y,z) =ayz—V =0
A= f(z,y,2) = 2zy + 20z + 2yz
area is not bounded above
fo=2(y+2) = Ayz
fy=2(x+2) = dxz
f= 2(3&'-1—:[/) = Ay

2.6 R"—R"

Definition 2.10. f : R — R™, f is differentiable at d means there is a matrix A representing a linear
transformation so that equations

call Df(a) = A

Remark 2.3. f:R" = R™, f(Z) = (f1(x),..., fm(Z)) then

gﬁ o gfl
D(# o Tl (0fi i=1,---,m rows
(Z) ; - T\ o j=1 n  cols
fm O fm J T
oxq e Oxp

Remark 2.4. f(¥) = AZ +b, Df(Z) = A.
Proof. Method 1.

f(Z+h) = f(Z)+ Al
=Df=A



2.6. R" - R™

Method 2.

(@) =) auw +b
=1

f2(%) = Zazlﬂiz + be
=1

[i@) =) anzi +b;
=1

of _
61‘]‘ o

_(9fi _
Dr = <5l’j A)

Theorem 2.20 (Chain Rule). Dgo f = Dg(f)Df
Ex 2.20. Between polar and rectangular coordinate, (x,y) = f(r,0).

zr xg| |cos@ —rsinf
Yr Yo| |sinf rcosf

DI = |

Ex 2.21. g(z,y) = (u,v),u = 2% — y*, v = 2xy.

O v e ]
Dgo f=Dy(f)Df
_ 2r cos 0 —2rsin 0} |:Cf)S 0 —rsin 0}
|2rsinf  2rcosf | [sinf rcosf
[27(cos? 0 — sin? 9) —472 sin 0 sin 0

4r cos 0 sin 0 272 cos(cos? § — sin” §)

Ex 2.22. f:R? - R? (z,y,2) € R3 (u,v) € R?, f(x,y, 2) = (u,v) = (2xy?sin(2), 3we¥~—5%).

Df = uy uy uy|  [2y%sin(z) 4daysin(z) 2zy? cos(z) |
Tlve vy wy| | 3eT5E 6re?voe 7151'62?/’52_
O(u,v) _|ux uy
8(1‘,2./) Vg Uy
= Uy Uy — UyUy
= 12zy? sin(z)e* 5% — 12zysin(z)e?¥ 52
O(u,v) = —602%y? sin(2)e® 5% — 122%y% cos(z)e? 5!
Ay, z)

Fx 2.23. f:R?® - R3 2= pcose,y = psinpsinf,x = psin ¢ cos f

T, Ty To
Df =1y vo e

_Zp Z¢ Z0

[sinpcosf pcospcosd —psingsind
= |singsinfd pcos¢sinh  psin ¢ cos b
Cos ¢ —psin ¢ 0

23
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Jacobian of f, ordet Df = J; =

8(1’,972’) 2 2 : 2 2
—— = = oS- cos” 6 cos ¢ sin ¢ + p* sin” 0 sin ¢ cos
20, 6.0) ¢-(p $sing +p ¢ cos @)

+ psin ¢(psin® ¢ cos? § + psin? ¢ cos? 0)
= cos ¢p? cos psin ¢ + p*sin® ¢
= p?sin¢



Chapter 3

Implicit Function Theorem and Its
Applications

3.1 Implicit Function Theorem

Theorem 3.1 (IVF, Version One). F(Z,y),7 € R",y € R,F € C'(U),U open in R"*'.3(d,b) € U. F(a,b) =
0,F,(a,b) # 0, there are balls B(d, ry), B(b,r1) so that for each & € B(d,ry), there is a unique y € B(b,r1), we
call y = f(Z), then f € CY(B(a,ro)) and

Of(Z)  —Fu,(Z, f(T))
al‘]‘ N Fy(faf r

Proof. Take B(d,70), B(b,r1), without lost of generosity, assume F,(@,b) > 0 in B(d,ry) x B(b,r1); then F
is positive in the neighborhood. Then there’s subset at intersection of direction of y and the neighborhood
boundary being positive with length 7, and a subset at intersection of opposite direction of y and the
neighborhood boundary being negative with length 7y ~. Let ro = min(vy ", 7). By MVT, for all & € B(d, o)
there is a unique y € B(b,r1) with F(Z,y) = 0, call y = f(Z). This means F(Z, f(Z)) = 0 for all ¥ € B(a,r)).

Foraf let hh = héj,

By MVT, let |#] < ‘E s between f(Z + h), f(Z)

Let h — 0,f — 0,5 — f()

25
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Remark 3.1 (Application). If
* F(z1,...,2n,y) =0
* F(d,b)=0
e F,(a,b)#0
* Fis C! near (a,b)
then y = f(&) for & near a, F(Z, f(Z)) = 0.
Theorem 3.2. S = {ZcR" |G(Z) =0}, € S < G(a@) = 0. If VG(@) # 0,
(02, G(@), 05,G(@), ..., 0,,G(@)) #0

then for some k, 0., G(d) # 0. By the IFT, xy, = f(x1,..., & ,...,Zy) near d. There is a neighborhood N of

removed

a os that N NS is a graph. If VG # 0 on al of S then S is locally a graph at each point.
Ex 3.1. Solve 22 — 42 + 2y* — yz — 1 = 0 for x(y, 2),y(z, 2), z(x,y) near (2,—1,3).
Answer.

F(z,y,2)=2* —4r+2y* —yz —1 e C!
F(2,-1,3) =0

For z as a function of y and z, check F,(2,—1,3) # 0
F.(2,-1,3) =22 — 4|2 =0 (IFT does not apply)

For z as a function of = and y, check F.(2,—1,3) #0

F.(2,-1,3) = —yly=—1 =1 (IFT does apply)
0z —F, —(2z-4)
oxr F, —y
% o _Fm _ —(4y—2)
oy Fy, -y
Theorem 3.3 (IVT, In General).
F(#9) =0
?j: (yla"'7ym)
f: (1’1...7I’n)
F(@,b)=0,F € C" near (@,b)
dot DyF = I Fw) |

Y 8(y17"'aym) (@,b)
y(Z) for & near a
F(#,§(7)) = 0, € C*

Then

9(F1u,..., F)
9y _ Oi,ym)
ax] 8(F17~--»Fm)

: a('!/lv'ﬂ;?hn)

(Except y; is replaced by z; in numerator)



3.2. CURVE IN R?

Ex 3.2.
T = psin ¢ cos 6 F =psingcosfd —x =0
y=psingsing = (G =psingsind —y =20
zZ = pcos ¢ H=pcos¢p—2=0

Solve for p, ¢, 6 as functions of x,y,t?

Answer. 655’5):5) = p%sing # 0 for p > 0,0 < ¢ < 7. So yes, p, ¢, 0 are functions of z, y, z.
A(F,G,H)
99 _ T okw.0
3y ~ 9(F,G,H)
9(p,9,0)
_ O(F,G,H)
o(p,y,9)

p?sin ¢

Notice that Hy =0, = FyH,
= —psin ¢ sin 6 cos ¢

3.2 Curve in R?

Definition 3.1 (Smooth Curve).
1. Graph of a C! function on an interval, y = f(z) or x = g(y).
2. Locus. S = {(x,y) | F(z,y) = 0}. If VF(a,b) # 0 forall (a,b) € S, then either
(a) F.(a,b) # 0, meaning x(y) for y near b, or
(b) Fy(a,b) # 0, meaning y(x) for « near b

= S is locally a connected C! graph.

3. Parametric. f : (a,b) — R2, fis CL, so connected.

—

(t) =
7 = (@'(6), /(1))

check that f is 1-1.

Ex3.3. F(z,y) = (22 +y> - 1)(2? +9?> —4) =0. Is S = {(x,y) | F(x,y) = 0} a smooth curve?
Answer. 22 +y? — 1 =0 or 22 + y? — 4 = 0, not connected, so not a smooth curve.

Ex3.4. Is S = {(=,y) | #* = y*} a smooth curve?
F(z,y) =2 —y*=0
2z 0 =
VF = (—23/) = (0> for (z,y) =0

It’s not a graph for either x or y near 0. So not a smooth curve.
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—

Ex 3.5. f(¢)
(cost,sint),0

= (cost,sint),0 < ¢t < 2m, the counter-clockwise unit circle, is a smooth curve. g(t) =
< t < 4m, not 1-1 so not a smooth curve.

Ex 3.6. Is f(t) = (> — 1,2+ 1) for t € R a smooth curve?
Answer. x =12 — 1,y = t2+ 1, f(t) ison the line y = x + 2. f(—1) = f(1) = (0,2). So not smooth.

Ex3.7. S={(z,y) | F(z,y) = 2® — 3y*> — 3 =0}. Is S a smooth curve?
Answer.

2x

vren = (%,

Fec!

>:6 for (z,y)=0¢ S

S is locally a graph at every point in S. But it’s a hyperbola, so not connected. Not a smooth curve.

3.3 Smooth Surfaces
1. Graphs (all functions are C")

z:f(x,y) ory:g(x,z) Orm:h(yaz)
f(x,y)—z:()
F(z,y,2) =0

VF(z,y, z) is a normal to the surface

ii=VE = (F,F,,F.) = (fuo, fy,—1)

2. Locus S = {(z,y,2) | F(z,y,2) =0}. VF(z,y,2z) # 0 for all (z,y,2) € S. If F,, # 0 then z = h(y, z)
near the point (z,y, z). So S is a graph h(y, z), y, z near the point. Similar for F, # 0 and F. # 0.

3. Parametric (want 1-1)

—

f(u,v) = (J:(u,v), y(uﬂ})v Z(u’ U))
Fix v = vg

f(u) = (z(u,v0),y(u,vo), z(u, v0))
G(u) = (z(uo, v), y(uo, v), z(uo,v))

fu=(
Go = (

xuvyuazu)
v )

:L"U ) y’U ) Z’U
The normal is

fu X gy = (yuzv — ZulYvy Fuly — Tulv, Tulo — yul'v) # 0

Ex 3.8 (Locus). z2 + ¢+ 22 =1.

S=( a2+ +22-1=0
—_———
F(z,y,2)
VF = (2x,2y,2z) = 2(x,y,z) = 0 only at (0,0,0) ¢ S
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Find graph for top half
— /1 _ x2 _ y2
(x,y,vl—xQ—yQ) {E2+y2§1
Find graph for front half

(V1—y2—22y,2) y*+22<1

Ex 3.9 (Parametric). Sphere of radius 1. Use spherical coordinates:

r = sin ¢ cos 0
y =sin¢sind
Z = Ccos ¢
The surface is (z(¢,0),y(¢,0), z(¢,0))
(cos¢pcos,cos@sinf, —sin @) x (—sin¢psin b, sin ¢ cos 6, 0)
= (sin? ¢ cos B, sin? ¢ sin 6, cos ¢ sin p)
= sin ¢(sin ¢ cos 0, sin ¢ sin 6, cos ¢)

i=0for ¢ =0,7

Ex 3.10. f(u,v) = (ucosv,usinv, u?), (u,v) € R2. For 1-1, must be 0 < v < 2m,u > 0.

fu X fo = (cosv,sinv, 2u) x (—usinv, ucos v, 0)

= (—2u® cos v, —2u? sin v, u cos? v + usin® v)
= (—2u? cos v, —2u? sin v, u)
= u(—2ucosv, —2usinv, 1)

f(=u,v) = (—ucosv, usinv, u?)

= (u(—cosv), u(—sinv), u?)

= (ucos(v + ), usin(v + 7), u?)

flu,v+m)

Let . = ucosv,y = usinv, z = u?, f(uw) is on 22 + y? = z (Locus)

F(z,y,2) =2 +y* —2=0
VF = (2,2y,—1) £ 0

The entire parabola is a smooth curve
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3.4 Inverse Function Theorem

Ex 3.11.

— Uz Uy
Df= [vw UJ
—2x 1
_ 3:.3 x2
- [ y x}
—3y

By IFT, =1 exists
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Integration

4.1 Integration in R

Definition 4.1. f : [a,b] — R, f is bounded, |f(z)] < M, Vz € [a,b]. ,—M < f(z) < M. Let partition
P={xp=a<z <x9 <+ <2 =b}. Subintervals I}, = [z_1,z],k = 1,...,n with widths |I}| = x} —
r_1 = Axy. Let my = infyeq, f(x), My = sup,cy, f(x). Then the lower sum is

Lp = Z mkAxk
k=1

the upper sum is

Up = Z MkA[Ek
k=1

and f is integrable if and only if
Ve>0.3P. U, - L, <e€

/abf(x) dx

Theorem 4.1. If f is monotone on [a, b] then f is integrable.

if true then

Theorem 4.2. If f is continuous on [a, b] then f is integrable.

Definition 4.2 (Sets with Zero Content). S C R has zero content means for every ¢ > 0, there is a finite
collection of intervals I, ..., I, so that

Sc Uk
k=1
and

n
> Ikl <e
k=1

Ex4.1. S={1,5,3,%,... }. Given e > 0, let

52939 40
€ € €
= (0-G0+5)=5(05)
<
2
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Since L - 0asn—o00,503IN.n>N+1= 1€,

L cI
n+lmn+2 " [=7°

Andforl,..., %,
€ €
B(l,—>_l, L] =
AN v bl =gy
€ €
B(z,—)_l, I =
AN T
€ €
B(N,—):I, In| = -5
AN v vl =5y
S

Theorem 4.3. If R C S, S has zero content, then R has zero content.

Theorem 4.4. If 51,5, ...,S; have zero content, then

S=1]s,

3

1

J

has gzero content.

CHAPTER 4. INTEGRATION

Theorem 4.5. If f is continuous on [a, b] except on S a set with zero content, then f is integrable.

4.2 Integration in R?
Definition 4.3. f bounded on a rectangle, R = [a,b] x [c, d]. Partition:

rp=a<r1 <2< --<xp=2>
Yyo=c<y1 <ya < - <ym=d

Subinervals:

I, = [xp—1, zk)
Jp = [x1-1, 7]

Subrectangles:

RkZZIk X Jl



4.2. INTEGRATION IN R? 33

On each Ry,;:
my = inf f My =sup f
Ry Ry
Upper sum:
m n
U= Z Z Mkl Aa:iij
j=1i=1 \F/_/
rea R;;
Lower sum:

m n
L= Z kal Ax; Ay,

j=li=l1 Area R;;

fisintegrableon R <= Ve >0.3P.U—-L<e¢

Theorem 4.6. If f is continuous on R, then f is integrable on R.

Definition 4.4 (Zero Content on R?). S C R? has zero content means for every € > 0, there is a finite collection
of rectangles Ry, ..., Ry so that

N N
S C URi and Z|Ri|<e
i=1 i=1

Theorem 4.7. If g is integrable on [a,b], then S = {(z,g(z)) | a < x < b} has zero content in R?

Proof. Since g is integrable, given € > 0, there is a partition on so that

U-L= Z(MZ —mi)Axi <€

i=1
then

Ri = Ii X [m,,Mz] c S
|R;| = Ax;(M; —my;)
onI;,m; < g(z) < M;

n

505 C OR,-, > IR <€

i=1 i=1

Theorem 4.8. A vertical line segment {x} x [c, d] has zero content in R?.

Theorem 4.9. If S1, S, ..., Sy have zero content in R? then

has zero content in R2.

Theorem 4.10. If f is continuous on a rectangle R C R? except on a set S of zero content, then f is integrable.
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4.3 Evaluate Integrals

Definition 4.5 (Multiple Integral). R = [a,b] X [c, d], by Fubini-Tonelli,

/Rf(m/) dmdyzfcd (/abf(%y) dm) dy:/ab (/Cdf(x,y) dy) i

Ex 4.2. S is the region bounded by y = 2%,y = 6 — 4 — x. Write ffs fdA as iterated integrals.

y = —(z* + 4z — 6)

—(z+2)*+10
T = +4/10 —
22 =6 — 4z — 22
r=1,-3

1 p—(x+2)2410
[raa= | | fa,y) dy da
S -3 Jz2

1 v 9 /T0=g—2 10 py/T0=y—2
- / / f(a,y) de dy + / / f(a,y) de dy + / / f(a,y) do dy
0 J—yy 1 J-m 9 J_yTo—y-2

Ex 4.3. S is the region bounded by z = 22 + y? and z = 1.

[ v
:///f(a:,y,z)dzdydz
:///f(:z:,y,z)dydzdz

/ / / (z,y,2) dz dx dy
y? Ja2+y?



Chapter 5

Line and Surface Integral

5.1 Curves

dR=C1+Cy+C5+Cy+Cs
Cy : (cost,sint),t € [?Zr,?w]

Co: (1,t),t € [0,1]
Cs:(1—t,1),t€[0,1]

In general, if we have [a, ] and g from [a, b] to curve ¢, the opposite is —c, then
(=9)(t) = gla+b—1)
(=9)(a) = g(b)
(=9)(b) = g(a)
Cy:(1—t,1—(14+1)2),te]0,1]
C5 : (t - 1, —t)
Definition 5.1 (Arclength).
g=(@1(t),...,za(t))
gt) = @\ (), .., (1)) (Velocity)
gy #0, gect

ds

L h gl d
ength — [ (300 s

speed  time

Ex 5.1. What is the length of ¢, top half of the circle with radius R?

g(t) = (Rcost,Rsint),0 <t <
g (t) = (—Rsint, Rcost)
17 (t)| = VR2sin?t + R2cos?t = R

[ s /Rdt

35
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36
Ex 5.2. Find the length of the graph of y = 23 for0 < z < 1
g(a) = (z,2°)
g'(x) = (1,32%)
7'(@)] = V1 + 921

1
/ds:/ V14924 do
c 0

Definition 5.2 (Vector Fields). For each & € R", we have F (&) € R"
Definition 5.3 (Simple Closed Curve). C is a simple closed curve if

1. Cis aclosed curve, g(a) = g(b)

2. gis 1-1 on (a,b)

Definition 5.4 (Line Integral).
F=(F,...,F,)
Z=gt) = (z1,...,2,),t € [a,b]
ﬁ~d£’:/ Fydzy + -+ F, dz,
c e,
b —
- [ Fao)- g0 d
Let R C R"
C =0R
C:g(t),t € la,b
gla) = g(b)
7 - 90
1g(t)]
— b —
| Feai= [ Faw)-mog )
= / F.Tds
c
If R € R?, there is outward normal vector n orthogonal to T
T=(T1,T2)
n = (TQ, —Tl)
F=(P,Q)

/ﬁ-df:/ﬁ-Tds
C C
:/PT1+QT2ds
C

/(Q, —P) - (Tz,—T1)ds
c

Leté:(Q7_P)
:/é~nds
c

(unit tangent vector)



5.1. CURVES

Ex 5.3. C is the unit circle, counter clockwise.

—

Fla,y) = (@ —y,2+y)
N
P Q
C = (cost,sint),t € [0, 2]

/CF~d:E':/Cde+Qdy
27
- / F((t) - 7/ (t)dt

27
= / (cost — sint,cost + sint) - (—sint, cost)dt
0

2w
— / 1dt
0

=27

Ex 5.4. C is the graph of y = 2* from —2 to 2 and the line from (2, 16) to (-2, 16).
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5.2 Surface Integrals in R3

R € R? = [a,b] x [c,d]
G:R—R?
G (u,v) — (z(u, ), y(u,v), 2(u,v))
S =G(R)

Consider a small rectangle on S, the area is

‘éu X C_iq, du dv

éu = (xuvyua Zu)

Gy = (X0, Yo, 20)

Area of § = //dA
:/4‘6'”

X
i J k
Ty Yo 2o

= (Yuzv — 2ulYv, ZuTo — TuZs Tuly — YuTy)

- (5 5o 79
z 2 Z,T 2 x, 2

- (A (e (e

Find [/ F - ndA where F € C! is a vector field

G,

—

G, X C_jv

//FndA //Fé Gu x Gyl du dv
— [[ #@ 2 |G x
R G, x G,

:// (@) (G x Go) du dv
R
Ex 5.5. Area of the upper hemisphere of radius a.

Method 1

—y? (Graph over z2 + 3% < a)

G = (1.0,-%)
z
S _Y
G, = (0,1, Z)
G, @y = (g, %, 1) (Normal to the surface, points up)
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(5.4

fL’2 2
;-F%—I—l
I’Q 2

dA =5+ L v 1dedy
z z
x2 +y? 4 22
— [ dndy

:gdmdy
z

AreaofS:// dA
R

27 a
a
B /0 /0 Va2 — r2
= 2ra(—va? — r?)

= 21a?

r dr df

0

Method 2

G(o, 0) = (asin ¢ cos B, asin ¢ sin b, a cos ¢) 0 < ¢p<7/2,0 <6< 2m)
é¢ = (acos¢cosf,acos¢sind, —asin @)
= (—asin¢sin, asin ¢ cos b, 0)
Gy x Gy = (a2
= asin ¢(asin ¢ cos b, asin @sin b, a cos @)
= asin qﬁé(qﬁ,&)
‘C% X é” = asinqﬁ‘é(gb, 9)‘

sin? ¢ cos 0, a® sin? ¢ sin 0, a? cos ¢ sin ¢ cos? 0 + a? cos ¢ sin ¢ sin? 0)

=a’sing
Area of S = // a® sin d¢ df
R

27 %
= / / a?sin ¢ do df
0 0

us
2

= 27a®(— cos P)

0
= 21a?

Ex 5.6. Given box (z,y,2) € [0,a] x [0,b] x [0,¢], S is the surface of the box. F(x,y,z) = (x,y, 2).

//ﬁ~ndA=W+// Een dA + CmdA
S bot back
+// ﬁ-ndA—&-// ﬁ~ndA+/ F.-ndA
top right front

:// ﬁ~ndA—|—/ ﬁ-n-ndA—F/ F.n-ndA
top ?:’Z/ right ?:’: front ?:’:

= 3abc
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5.3 Divergence Theorem

Theorem 5.1 (Divergence Theorem). R € R3, compact, regular (R = Rin), OR piecewise smooth, oriented
(outward normal is C' on S). F is C' on R. Then

// ﬁ.ndA:/// div- F dV
OR R

div(F)=V-F
= 0, + ByFQ + 0, F3

Ex 5.7. Cylinder, with radius a and from z € [0,2]. R = Top + Bottom + Side. F = (22 4 42, —2xy, 2 + xy)

// F-ﬁdA:/// div F dV
AR R
:///2x—2x+322dxdydz
R
:///Bzgdxdydz
R
2
// /3zzdzdxdy
w2+y2<a? Jo
:// 8 dx dy
.'Ii2+y2S(L2

= 8ma?

Ex 5.8 (Fundamental Solution). In R3, ¥ = (z,y, 2),

S 1 1
IO =3~ T
|33| T4+ Yy +z
X
%9 = e
o Y
vd = —_3
||
z
9=
T
Vg=—-—3
|Z]

Ag=V -Vg=0,9:+ aygy + 0.9

—x -y -z
= rfg""ay =3 +0: 3
|7 |7 |7
) =5 =5 =
:w—x<—3|x\ :v)—y(—3|x\ y)—z(—3|x| 52)
-3 3
EE

g is harmonic in R? except when ¥ = 0.
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Ex 5.9. Consider the ball with radius a. % is the directional derivative.

If we could apply the div theorem, then

L

3

I
—
B

‘QJ

By
IS
N

So we cannot apply the div theorem.

Ex 5.10. Suppose R is a regular region with piecewise smooth OR and 0 € R™, meaning there’s a ball B(0,
R. Look R — B(0,a). Note that (R — B(0,a)) = ORU dB(0,a). Vg is a C* vector field on R — B(0, a).

// 9 g4 = /// V.VgdV =0
DRUDB(0,a) 3” R—B(0,a)

Let 7 be the inner normal (towards origin) on the sphere

// agdA+// 99 44—
or 0 8B0a)an
// 8gdA // 99 44—
or 0 8B(0a)8n
// agdA——ﬂ'
or 0

Ex 5.11. Why divergence? Consider the average value of f(Z) on S.

zl—;/sf(:f) dz

IfS:B(‘TOa )

41

a) €

f(@) = lim ——— =] / dz (when f is cont. at xg)

r—0 ‘B o, T

,T‘
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Ex 5.12. We have F € C" on R and B(xo,r) C R"™.

div F(zg) = Th_}r% |B P /// div F(%) d¥
; (zo,r)
lim 1 // = a7
= 1 _— -n l‘
r—0 |B(£L'(), T)| OB (xo, r)

the amount of stuff going out of the ball.

If div F(zg) > 0, it’s a source; if div F'(xg) < 0, it’s a sink.

5.4 Stokes’s Theorem

Theorem 5.2 (Stokes’s Theorem). F € C! is an open set containing S, S is a piecewise smooth surface with
0S piecewise smooth, oriented (outward normal), C = 9S is a simple closed curve. Then

/ﬁ-Tdf://curlﬁ~ﬁdA
c s

curl F =V x F
= (6xaayaaz) X (F17F27F3)
= (ayFS - 8z‘FZyaz‘Fl _azF3yaa:F2 - 8yF‘1)

Why Curl? Let D, be the disk with radius r and C, = 0D,

1 .,
curlF(J;O)-n:lim—// curl F' - n dA
1Dr| J b,

r—0

1 R
= lim —/ F-Tdr
=0 | Dy C,

If curl F(zo) - n > 0, the vector field spend most time in the direction of tangent vectors of the circle. If
curl F'(zg) - n < 0, the vector field spend most time in the opposite direction of tangent vectors. No matter what,
there’s curl.

Ex 5.13. F(z,y,2) = ( O) in R3 except the z-axis

—y T
z2+y2 ) z2+y2 )

curl F = (9, F3 — 0, Fy, 0. Fy — 0,F3,0,Fy — 0,Fy)

1 1
= 10,0, -
22 f g2 22+ g2

= (0,0,0)

Take C, = {2* + y* = a®,2 =0}, then T = 1(—y, z)
/ ﬁTdS:/ 2_y2;y+%£d8
c, c. T +ycr ré 4y r

P
= *2d8
c. T

=27

If there were a surface S with S = C,, then

27r/ ﬁ-Tdsz//curlﬁ.ﬁdAzo
C, S



