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Chapter 5

Integrability in R

5.1 Riemann Integral

Definition 5.1 (Partition). a < b, a partition of [a,b] is P = {xg,x1,...,Tx} S.t. o =a <z <29 < -+ <
T, = b.

Definition 5.2 (Norm). The norm of P is

1P = max |z; -z

Definition 5.3 (Refinement). The refinement of P is a partition Q such that Q > P

Ex 5.1 (Dynamic Partition). Prove: ¥n € N. , P, = {2% | 0 < j <2} is a partition of [0,1] and P, is finer
than P, if m > n.

Proof. Since £ < £t and -2 =9, 2. = 1, then P, is a partition of [0, 1]. To show P,, D P,:

on on on ) 9n
. j j . men
j . Qm—’n/
T om
= Pm D Pn,

Remark 5.1. If P, Q are partitions of [a, b], then P U Q is finer than P and Q.

Remark 5.2. Q is finer than P means ||P|| > ||Q||-

Definition 5.4 (Interval). For j =1,2,...,n, let Az; = z; — x;_1 (length of j-th subinterval).

Definition 5.5 (Upper Riemann Sum). Suppose f is a bounded function on [a,b]. The Upper Riemann Sum
of f over Pis

n

U(f,P)=)_ M;(f)- Az

j=1
where M](f) = Supmj,l <z<z; f(l’)

Definition 5.6 (Lower Riemann Sum). Suppose f is a bounded function on [a,b]. The Lower Riemann Sum
of f over Pis

L(f,P) =Y "m;(f)- Ax;
=1

where m;(f) = inf,, ,<i<a; f()
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Remark 5.3. L(f, P) < U(f, P). Moreover, if f = o on [a,b], then U(f, P) = L(f, P) = a(b — a)
Lemma 5.1. If Q O P, then L(f,P) < L(1,Q) < U(f,Q) < U(f. P)
Proof. Without lost of generality, assume Q = P U {c},c ¢ P. It suffices to show that L(f, P) < U(f,Q).

By definition, P = {xq,...,x,} and Q = {zo,..., T, ¢, Ti41, ..., T}
p)=>_m;(f)Az;
j=1

n

- Z m;(f)Az; +mpg1(f)Azig

JAI+1
= Y mi(HAz; +mup (f) (@i — @)
JAI+
Note that
inf f< mf f
[xl :Dl+1] [a:l C
inf  f< inf f
[1,2141] [e,z141]

m1 () (@1 — ) = mia () (@41 — ¢) + muga (f) (e — @)
< inf f(xgq —co)+ [mf flc—m)

le,xi41] z7,c]

L(f,Q) = Z m;(f)Az;+ < inf f($l+1—c)+[lnf fle—ay)

Pore) (e @141
> D mi(H)Az; + g (F)(@r =€)+ mia (f)(e - z)
JAI+1L
= L(f,P)
O
Corollary 5.1. L(f,P) <U(f,Q)
Proof.
PUQDP, PURDQ
L(s,P)y< L(f,PuQ) < U(f, PUQ) < U(£,Q)
O

Definition 5.7 (Reimann Integral). f : [a,b] — R is Riemann Integrable if
1. fis bounded on [a, b]
2. Ye>0.3P.U(f,P)— L(f,P) < ¢

Theorem 5.1. Every continuous functions on [a, b] are Riemann Integrable.

Proof. By extreme value theorem, every continuous functions on [a, b] is bounded. To verify #2 in definition,
firstly, if f is continuous, then f is uniformly continuous on [a, b], that is,

€

Ve>0.30 >0. |1 — 22| <6 = f(Il)—f(I2)<b_a

Choose partition P = {xo,...,z,} s.t. |P|| <9, then |z; —x;_1| <4, j = 1,...,n. Again, by extreme value
theorem,

Jyj € [zj-1,75], 25 € [wj—1,25]. fly;) = M;(f), f(z;) = mi(f)
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Now consider

Ex 5.2. The Dirichlet Function

)1 z€Q
O

is not Riemann Integrable on [0, 1].

Proof. Take arbitrary paartition P of [0,1], M;(f) = supy,, , ., f = land m; = inf,, , .1 f =

U(fvp)_L<f7P):

Definition 5.8 (Upper and Lower integral). f : [a,b] — R is bounded, then

1. the upper integral of f is
b
(W [ f@)iz =int U(f,P)

2. the lower integral of f is

b
aﬁjmmﬁguwﬂ

3. define

[ rwae=w [ s v o [ @a=o [ e

Remark 5.4.

Theorem 5.2. Let f : [a,b] — R be bounded, then f is integrable on [a, b] iff

wlﬂwmmlﬂw

0, so
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5.2 Riemann Sum
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Definition 5.9. A Riemann Sum of f w.r.t. P = {xy,...,x,} of [a, b] generated by samples t; € [x;_1, ;] is

n

S(f. P.t;) =Y f(t;) - Ax;

j=1

Which converges to I(f) as || P|| — 0 if for any samples t; € [x;_1, x;]

Ve >0.3P. C [a,b]. P ={xq,...,2n} D P. = |S(f, P,t;) — I(F

Theorem 5.3. f: [a,b] — R bounded then f is integrable on [a, b] iff lim p|_o S(f, P,t;) exists.

Theorem 5.4 (Linearity). If f, g are intergable on [a,b], a, 8 € R, then «f + (¢ is also integrable, and moreover

/ab(aerﬂg x*a/f d:z:+ﬁ/

Proof.

b
/ f(z)dz = lim S(f,P,t;)

lIpll—0
Z ft))Az;

HpH—>0

a | flz)de=a lim Zf YAz

a lIpll—

B | g(x)de=p lim Zg sj)Az;

a lpl—0

b b . b
a/a f(ac)dm—l—ﬂ/a g(x)dz = lim Zl af(t;)Az; + hm

llpll—0<
J

=1
= S(af + By, P,t;)

(vt;)

(vt;)

(vt;)

(VSj)

(vt;)

(vt;)
(vt;)

O

Theorem 5.5. If f is integrable on [a, ], then for all ¢ € [a,b)], f is integrable on [a, ¢| and [c, b], and moreover

/abf(w)dm _ /acf(x)da:—&—/cbf(x)dm

Theorem 5.6 (Comparison). If f, g are integrable on [a,b] and f < g on [a, b], then

/ab fl@)dx < -/abg(m)d:v

Corollary 5.2. If m < f(z) < M on [a,b], then

b
m(b—a) §/ f(z)dz < M(b—a)
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Theorem 5.7. If f is integrable on [a,b], so is | f| and

/ab f(x)dx

Theorem 5.8. If f, g are integrable on [a,b], then so is fg.

< /abf(x)ldx

Theorem 5.9. If f is integrable on [a,b], V[c,d] C [a,b]. f is integrable on [c, d].

Theorem 5.10 (1st Mean Value Theorem). Let f,g be integrable functions on [a,b]. g(x) > 0 on [a,b]. If
m = inf,p) f, M = supy, ) [, then

b b
acC € [m, M]. / f(z)g(x)dx = C’/ g(x)dx

In particular, if f is continuous on [a, b, then
b

b
Jzg € [a,b]. / f(z)g(x)dx = f(:no)/ g(x)dx

a

Proof. g(x) > 0ona,b], m < f(z) < M on[a,b], then mg(z) < f(z)-g(x) < Mg(x) on [a, b]. By Comparison,

m [ @) = / () < /  fe)g(a)dr < / " Mo(a)de = 0 / " (@)

If f;g(ac)d:c =0, then ffg(x)dx =0= C’f; g(z)dz,VC'. Otherwise,

b
e oo @i
I, 9(x)dx
In particular, if f is continuous, by Intermidiate Value Theorem, 3z € [a,b]. f(z¢) = C. O
1 x>0 x
Ex 5.3. = - ind F(x) = t)dt
x53. f(2) {_1 " find F@) = [ ()

Answer. If 2 >0, F(z) = [ f(t)dt = a;if 2 <0, F(x) = [} f(t)dt = — ff f(t)dt = —x. So F(z) = |z|.
Theorem 5.11. If f is integrable on [a,b], then F(z) = [ f(t)dt exists and continuos on |a, b].

Proof. Since [a,z] C [a,b], then [T f(t)dt exists. Show F(z) is continuous on [a, b] by proving Ve > 03§ >
0. Vo € [a,b]. |x —xzo] < § = |F(x) — F(z)| < € assume IM > 0. |f| < M on [a,b]. Choose § = +

M
assume zg < x < xg + 0,
| rwar- [ f(t)dt]

/I f(t)dt’

< /wlf(t)ldt

|F () = F(zo)| =

< Madt

= M(z — xo)
<Mé=e
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Theorem 5.12 (2nd Mean Value Theorem). Let f,g be integrable in [a,b]. Assume g > 0 on [a,b]. Let
m < inf[a’b] f, M > sup[a,b] f Then

dc € [m, M]. /abf(:n) d:c*m/ derM/

In particular, if f > 0 on [a,b], then

b b
de. € [a,b]/ f(x)g(x)dx:]\/[/ g(z)dx

Proof. Use m = 0, then 2nd statement follows from the 1st statement. To prove 1st statement, define

h:la,b] — R to be
m/ dt—|—M/

then h is continuous on [a,b]. ¢ > 0, m < f < M, givesm -g < f-g < M - g. By assumption,

b b b
h(b) = / gt)dt < / F(Dg(t) < / g(t)dt = h(a)

By IVT, there exists ¢ € [a, b] s.t.
m/ x)dt + M / t)dt = / flx

5.3 Fundamental Theorem of Calculus

Theorem 5.13 (FTC). f:[a,b] = R
1) If f is continuous on [a, b], define
x) = / f@)de
then F € C1([a,b]) and Vz € [a,b]. F'(z) = f(z).
2) If f is differentiable on [a, b] and [’ is integrable on [a, b], then

voe ot [ 0= @) -1

Proof of FTC
1) Proof. By symmetry, it suffices to show that if f(z¢+) = f(z¢) then

lim F(LC() + h) — F(xo) _ f(xo)

h—0+ t

By definition, Ve > 0. 30 > 0. 2o < x < 20+ = | f(x) — f(zo)| <e. FiIx0 < h <6,

zo+h o
Flao+ h) — F(xg) = / F(t)dt — / Ft)dt
amOJrh a
_ / o
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Note that

2) Proof. By definition,

n

>t aa - [ "yt

Jj=1

Ve >0.3P = {xo,...,zn} C [a,z]. <€

By MVT (4.15 (ii) on P.111), which says if f is differentiable on [a, b], then 3¢ € [a,b]. f(b) — f(a) =
f'(¢)(b— a), there exists t; € [x;_1,x;] s.t.

fi(tg) - Axy = f'(t)(x; — x5-1)
= f(x;) — flzj-1)

— <€

S (/) = Sy - | " Pt

j=1

Since

Remark 5.5. The hypothesis in FTC cannot be relaxed.

Theorem 5.14.
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Proof. Define

then
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Theorem 5.15 (Intergration By Part). If:

* f, g are differentiable on [a, b]

« f', ¢ are integrable on [a,b]

Then

Proof.

O
b b
/ F(@)g(@)de = f(x)g()]’ - / f(2)g (@)de
b b b
/g-df - (/-9 —/f-dg
(@) - 9(2) = '@) - 9(2) + f(@) - ¢/ (&)
b b
— / (f(@) - g(x))de = / () - 9(z) + () - ¢ (2)da
b
f(@) - g(x) = / (@) - g(@) + f(z) - ¢ (x)da
b
= [ r@ged = f@) - g@l, - 5@ g @)z
O

Theorem 5.16 (Change of Variables). Let ¢ € C'([a,b]) and F be continuous on ¢([a,b]), then

6(b) e [P
/ F(t)de 2= / F(6(@) (x)da
¢(a) a

5.4 Improper Integral

Theorem 5.17. Let f be integrable on [a, b], then

f )dx = hm f( )dx

c—at c
d—b~
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Proof.

F(x) :/ f(t)dt is continuous in [a, b]

= lim F(d) — hm F(e)

d—b— c—at
d
= lim f(z)dz
c—at Je

d—b~

O

Definition 5.10 (Improper Integral). Let (a,b) be an open interval, possibly unbounded, f : (a,b) — R. Then
« f is locally integrable on (a,b) if f is integrable on each [c,d] C (a,b)

« f is improperly integrable if f is locally integrable on (a,b) and
d

f dx— hm f(x)dx

c—at c
d—b~

exists and is finite. The limit is called the improper integral of f on (a,b)

Ex 5.4. Show: f(x) = 23 is improperly integrable on (0, 1]
Y

Proof. Since f is continuous on (0, 1], then f is integrable on every [a, ] € (0, 1], or it’s locally integrable.

/f dx_/a:csdz

223
= —x°
3 a
3
:i(b% —a%)
1
: .3 >
al—lgl‘*'/a f(x)dx o aligl‘*' 5 (1 B ad)
_3
2

By definition,
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Ex 5.5.
o f(x) = x~* is improperly integrable on (0,1) iff « < 1
o f(x) =2~ is improperly integrable on (1,00) iff & > 1

Theorem 5.18 (Linearity). If f, g are improperly integrable on (a,b), then af + B¢ is also improperly integrable
on (a,b) and «, 8 € R, then af + By is improperly integrable on (a,b) and

/ab(af + Bg)(x)dz = a/ab f(z)dz + ﬁ/abg(x)dx

Theorem 5.19 (Comparison).
* f,g: locally integrable on (a,b)
* Yz € (a,b). 0 < f(z) < g(z)
* g is improperly integrable on (a,b)

then f is improperly integrable on (a,b) and

[ o< [ gy

Ex 5.6. Prove: f(x) = % is improperly integrable on (0, 1].

Proof. f > 0 on (0,1]. f is continuous gives that f is locally integrable on (0, 1]. Notice that sinz < z on
(0, 1], gives that

smx x _1
7 S35 =T 2
xr2 xrz
Since z~ 2 is improperly integrable on (0, 1], by comparison, f is improperly integrable on (0, 1]. O

Ex 5.7. Prove f(x) = 182 is improperly integrable on [1, o).
x2

Proof. f > 0on[l,00). Since f is continuous on [1, c0), f is locally integrable on [1, co). Notice that logz < x

on [1,00), gives that

log5 T < xs _ -3
xrz €Tz
Since z~ 2 is improperly integrable on [1,00), by comparison, f is improperly integrable on [1, c0). O

Corollary 5.3. Assume:
« fis bounded, locally integrable on (a,b)
* |g| is locally integrable on (a,b)

Then |f - g| is improperly integrable on (a,b)

Definition 5.11 (Absolute Integrability). f is absolutely integrable on (a,b) if f is locally integrable on (a, b)
and | f| is improperly integrable on (a,b).

Definition 5.12 (Conditionally Integrability). f is conditionally integrable on (a,b) if f is locally integrable
on (a,b) and |f| is not improperly integrable on (a,b).

Theorem 5.20. If f is absolutely integrable then f is improperly integrable on (a,b) and

/ab f(x)dx

Ex 5.8. #11Z js conditionally integrable on [0, co).

xT

< / |l @)




Chapter 6

Infinite series of numbers

6.1 Introduction

Definition 6.1. Let S=5, ,ar=a1+ax+az3+...,
* Vn € N, the partial sum of S of order nis S, = >, _; ai.
* Sisconvergentif {S,} -, converges. If S,, — S asn — oo then S converges to s, denoted as > -, aj, = s
*» Sis divergent if {S,} -, is divergent. When {S,},_, diverges to oo, write Y ;- | ar = oc.

Ex 6.1. > .2, (—1)" is divergent.

Proof.

S1=-1,5=0,5=-1,5,=0,... = {Sn}zozl = {71,0,71,0,...}
which is divergent. O
Ex 6.2. Prove that Y -, 27" =1

Proof.

Sn:i:r’le—r"

k=1
lim S, =1
n— 00
O
Ex 6.3 (Harmonic Series). Prove: 220:1 % diverges
Proof.
1 = [Fo
k=1 = k1T
o1
o T+1
o1 * 1
lim dx :/ dx
n—oo Jg 41 o r+1
= {S,} diverges
=1
= — di
Z k iverges
k=1
O

13
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Theorem 6.1 (Divergent Test). Let {a;} be a sequence, with aj, 0 as k — oco. Then Y~ | ay, diverges.

Proof. Argue by contradiction. Suppose Y .-, a, converges. By definition, {S,}, -, converges to a € R,
gives that ay, = S, — Sy—1 — a — a = 0 as k — oo. This is a contradiction. Then )", ; a;, diverges. O

Theorem 6.2 (Telescope Series). Assume ay — a as k — +oo, then

a

Z(ak —agy1) =a1—a

k=1
Proof.
Sp = Z(ak — Qk41)
k=1

= (a1 —az) + (az —az) + -+ + (@n — an41)

= a1 — an41

—a; —aasn — oo
By definition, Y ;- ;(ay — ax+1) = a1 —a O

Theorem 6.3 (Geometric Series). > 7o x* converges iff |z| < 1. In particular,

= 1
Zxk:l—x

k=0

Proof. When |z| > 1, then 2% 4 0 as k — oo. By definition, > k = n®2* is divergent. When |z| < 1, then
1—2)S, =1 —-2)A4+z+z>+---+2")
:1+$+m2+...+x"7(x+x2+...+xn+1)
=1-2""" 5 lasn— oo

o0 o0
= E z¥ converges and E z =
k=n k=0

1
1—x

Theorem 6.4 (Cauchy Criterion). Zzozl converges iff

n
D

k=m

Ve > 0.dN € N. <e, Yn>m>N

Theorem 6.5. Let Y ;- | ax, > e, by be convergent series. Then: > ;- (aax + Bby) converges and

Z(aak + Bby) = Z aay + Zﬂbk
— k=1 k=1

k=1

6.2 Series with non-negative terms

Theorem 6.6. Assume a;, > 0, then the series ), _ aj converges iff {Sy,} is bounded, namely

n
D

k=1

Vn. 3M > 0. <M
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Proof.

« "=" If ), a, converges, by definition, {S,,} converges.

15

« "<": Note that {S,} is increasing. If {S,,} is bounded, by monotone convergence theorem, {S,}

converges. By definition, >, _; a; converges.

O

Theorem 6.7 (Integral Test). Let f : [1,00) — R positive, decreasing, then .-, f(k) converges iff f is

improperly integrable on [0, ), i.e.,

/00 f(z)dr < o
1
Proof. Let

k=1

Sumk=1,2,3,...,n—1

S s [ s dr< Y )
2 J1 . k=1

R/_/ B
Sp—f(1) "

Sn_f(n)

If >, f(k) converges, then >, , f(k) is bounded
t, = / /f(:c) dx is bounded
1
/ f(z) dz = converge by MCT
1

If [° f(k) dz < oo, then t, = [ g(z)dzx < co

S,, is bounded

i f (k) converges

k=1

Corollary 6.1 (p-series).

o0

Z kP converges iff p > 1
k=1

Proof. Let f(z) = k~P. Whenp <0, k=P 4 0, as k — oco. By diverge test,

o0

Z k~P diverges
k=1

(f decreasing)

(Comparison)
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When p > 0, f(z) is positive and decreasing. Note

/100 f(x)dz = /100 xipda;

converges iff p > 1. By integral test, Y .-, kP converges iff p > 1.
Theorem 6.8 (Comparison Test). Given 0 < a < by.

* If 3", by, converges, then ), aj converges.

» If Y, ay diverges, then ), by, diverges.

Ex 6.4. Determine

converges or not

Proof. Notice that Vk > 1. logk < 2k? because logl <2-12 and (log k)’

that

By comparison, it converges.

Theorem 6.9 (Limit Comparison Test). Let ay > 0,b; > 0. Assume L = limy_, Z—:(Z 0).

1. If 0 < L < oo, then Y ;2 | ai, converges iff > -, by, converges.

2. If L =0, and Y-, by converges, then Y7~ | aj, converges.

3. If L =00, and Y ;- , by, diverges, then >, , a;, diverges.
Proof.

1. Fix e = £, by definition of limit,

INeN “’“L’<
by,
L_a 3L
2 T by T 2

3L
*bkgak<7-

=)
E aj converges
k=1

2. If‘;—f—>0ask—>oo,then

an. & 4
by,

ar < by

o0 o0
E by, converges = E aj converges

k=1 k=1

L < (2-k7) = k3. This gives

(Converges by p-series)

O

(k> N)
(k> N)

(Comparison)

(k> N)
(k> N)

(Comparison)
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3. If ‘;—f — oo as k — oo, then IN. a, > b, as k > N. By Comparion, > .-, by converges gives that
> he | aj converges.

O

Ex 6.5. Determine converge or not:

> k
,;\/m—k

Answer. Let aj, = ¢
k

Kk 2
/o4 .2 k: 1
ELER LS - —ask =

x V2EF T RZ Kk V2

Since Y- | + diverges, by limit comparison test

- k
e diverges
; VIR R — k 8

Ex 6.6. Let a;, — 0 as k — oo, Prove that >, sin |ay| converges iff >~ |ax| converges.

sin|ay|
lak]

Proof. Recall S22 — 1 as # — 0. Because |a;| > 0, sin|ay| > 0 as k — oo. Since
limit comparison test.

— lask — oo by

oo oo
Zsin|ak| converges iff Z |ak| converges
k=1 k=1

6.3 Absolute Convergence
Definition 6.2. S =77 ax,

1. S converges absolutely if

oo
Z lax| < oo
k=1

2. S converges conditionally if S converges but not converge absolutely.

Ex 6.7.

00 —lk
;(k)

converge conditionally.
Theorem 6.10. If Y7 | ai converges absolutely, then -, aj converges.
Definition 6.3 (Limit Supremum). Let {z,}, ., be a sequence,
limsup xr = lim {sup azk} eR
k— o0 n—=o0 (k>n

Ex 6.8. X, =k,
limsup k = lim{supkj} = lim oo = o0

k—o0 k>n n—o0
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Ex 6.9.
limsup(—k) = lim (sup(—k))
k—o0 =0 f>n
=25~
= —c0
Ex 6.10.
, 14+ (-1)F 11 1
limsup ———— =1 0,1,0,-,0,-,0,—,..
msup ~— = = Jim 10.1,0,5,0,5,0,5,
1 _1\k
= lim {supw}
n=00 | k>n k
=0

Fact 6.1. limsup,_, ., a is the largest possible limit among all convergent subsequences of {x},- ;.
Proposition 6.1.

1. Iflimsupy_, o Tk < 7, then z;, < x for large k.

2. Iflimsupy_, , ., xx > x, then x;, > x for infinitely many k.

3. If x, — x as k — +oo, then limsup,,_, ., T = .
Theorem 6.11 (Root Test). Let r = lim supy,_, . |ak|%.

1. If r <1, then Y ;- | aj, converges absolutely

2. Ifr > 1, then Y ;- | aj diverges

lax+1]|
‘ak‘ ’

Theorem 6.12 (Ratio Test). Let r = limy_, o
1. If r <1, then "~ a), converges absolutely

2. Ifr > 1, then y_,° | ay diverges

6.4 Alternating Series

Lemma 6.1 (Abel’s Lemma). Let {ax},cn {0k }rey be real sequences. ¥n > m > 1, set A, = >, ag.
Then

n—1

Z akbk = An,mbn - Z Ak,m(karl - bk)
k=m k=m

Theorem 6.13 (Dirichlet Test). ay,br € R. If S, = >_}'_, ay, is bounded and by, | 0 as k — 0. Then

o)
D aibi
k=1

converges

Proof. Choose M > 0 s.t.

Vn eN. |S,| =

M
< =
-2

n
D a
k=1

|Anm| = ‘Sn - Smfl‘ < |Sn|

M M
Yn>m > 1. |Sm,1|§7+§7:]\/j
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Ve>0.dNeN.0O<by, < j;ask >N

n n—1
Z arbr| = |Anmbn — Z Ak (b1 — bi)
k=m k=m

n—1

< |An,mbn| + Z |Ak,m| |bk+1 - bk‘

k=m

n—1

= |An,7nbn| + Z |Ak,m| (bk - bk+1)

k=m

n—1
€
gM-MJrkZ:M-(bk—ka) (n>m>N)

=¢e+ M(b,, —by,)
§€+M-bm§€+M'%=2€

By Cachy Criterion

oo
E arby converges
k=1

Corollary 6.2 (Alternating Series Test). If by | 0 as k — oo, then

D (=1

k=1

converges

Ex 6.11. >°7, (_;)k converges conditionally

co (=1 ..
Ex 6.12. > /", Toak converges conditionally

General Procedure. Let S =3/ ax,
Step 1. Apply divergent test. Namely, verify if ar, /4 0 as k — oo

Step 2. Determine if S is geometric or p-series or if S looks like geometric or p-series; apply comparison test
or limit comparison test to » -, |ay|

Step 3. Apply root test or ratio test. Namely, find » = limsup,_, , . |ak|% or r = limg_, % If r <1then S
converges absolutely. If » > 1, S diverges.

Step 4. If S alternates, apply alternating series test.






Chapter 7

Infinite Series of Functions

7.1 Uniform Converges of Sequences
Definition 7.1. {f,} converges uniformly to f on E if
Ve>0.IN e N.Vn> N. |f, — f| <e

Theorem 7.1. Assume f,, — f uniformly on E and assume each f,, is continuous on E, then f is continuous
on K

Theorem 7.2. Assume f, — f uniformly on [a, b] and assume each f,, is integrable on [a, b], then f is integrable
on [a,b]. Moreover,

/;f(x)dx lim /abfn(x)dx

n——+oco
Lemma 7.1 (Uniform Cauchy Criterion). f,, — f uniformly on E as n — +oo iff
Ve>0.IN e N.Vi,j > N. |fi — fj| <e

Theorem 7.3. Assume

1. (a,b) is bounded open interval

2. fn is differentiable on (a,b) for every n

3. 3zg € (a,b). such that f,(xo) converges

4. f! converges uniformly on (a,b)

then f,, — f to f on (a,b), and
Vo € (a,b). f/(x) = lim f(2)

Proof. Fix c € (a,b), define

then g, is continuous on (a, b).

21
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Lemma 7.2. g, (x) converges uniformly on (a,b)

Proof.
1. When z # ¢,
o) = () = LA LE)  Lnl) S
— (fn - fm)(x) — (fn — fm)(c)
:(fnffm),(g)’ §€e (I7C)
= |gn (%) — gm ()| = [0 (2) = fr(x)| <&, n,m >N
2. Whenz =c¢

lgn(€) = gm ()| = [fn(c) = frn(A)l <&, m,m =N

Combining 1 and 2,
Va € (a,b). Vn,m > N. |gn(x) — gm(x) < €]

then g,, converges uniformly on (a, b). O

Let zg = ¢,

fn(@) = gn(2)(x — 20) + fr(20)

then
|fo(@) = f(@)] = |lgn(@)(x — 20) + fu(20)] — [gm (@) (2 — 20) + fin(z0)]]
< |$ - xO‘ ' |gn('r) - gm(x” + |fn(x0) - fm('rO)‘
<(b—a)-e+e
=(b-—a+1)-¢
By uniform Cauchy criterion, f,, converges uniformly on (a, b). O

7.2 Uniforma Converges of Series

Definition 7.2 (Series of Functions).

S(@) = fulw)

k=1

Definition 7.3 (Pointwise Convergence). The series Y, , fix(x) converges pointwisely on E iff

V€ E. Z fr(x) converges
k=1

or S, (x) converges as n — oo

Definition 7.4 (Uniform Convergence). The series Y .-, fx(x) converges uniformly on E iff

vV € E. Z fr(x) converges uniformly
k=1
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Theorem 7.4 (Weierstrass M-test). f : E — R. Suppose AM}, > 0. |fx| < My on E,

o) o0
Z M), converges —> Z fx(x) converges uniformly on E
k=1 k=1

Proof. By definition, )", , fx(z) converges uniformly on E if S, (z) converges uniformly on E. Prove by
using uniform Cauchy criterion:

Ve>0.IN e N.Vm >n > N. |S,(2) — Sp(2)] < € <=

Z fila

k=n-+1

<e€

Since Y77, My < oo, by the Cauchy criterion,

Ve >0.dN e N.VYm >n > N. <e€

>

k=n-+1

Because | f| < My, then

Z (@) < > My <e

k=n-+1 k=n-+1

Z fr(@)] <

k=n-+1

Definition 7.5 (Absolute Convergence). The series .-, fx(z) converges absolutely on E iff

Vr € E. Z | fi:(z)| converges
k=1

Theorem 7.5. fi : E — R. If fj, is continuous at zo € E and Y -, f1(z) converges uniformly on E, then f is
continuos at x.

Theorem 7.6 (Turn by turn integration). fy : [a,b] — R. If fy, is integrable on [a,b] and >_ -, fx(x) converges
uniformly on [a, b], then
b oo
IREEES
a k=1va

Theorem 7.7 (Turn by turn differentiation). f : (a,b) — R. If f} is differentiable on (a,b) and Y ;- fi(z)
converges at xo € (a,b), and >~ fi(x) converges uniformly to f on (a,b), f is differentiable and

Vo € ( Z fr(z
k=1
Ex 7.1. Show Y 7, % converges uniformly on [—%, 3)

Proof. Notice that
k

k A 1
VE € N. ‘k’<|x|<‘2

and
k

converges

—_

>

k=1

O |

. k .
By Weierstrass M-test, >, | £~ converges uniformly on [—3, %) 0
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7.3 Power Series
Definition 7.6 (Power Series). Given ay,zg € R
S(z) = Zak(x — z0)F
k=0
Definition 7.7. A non-negative extended real number R is called the radius of convergence of a power series

S(x) if S(x) converges absolutely for |x — x| < R and diverges for | — x¢| > R.

Ex 7.2. Consider special case
Z kFzk
k=0

in which aj, = k¥, 2y = 0. By root test,

1
lim sup ‘kkxk’ ¥ =limsupk |z|
k— 400 k— o0

For it to converge, it requires kx < 1 as k — oo, namely « = 0. Therefore, the series converges only at x = 0.
Theorem 7.8 (Root Test). Given power series S(x) = > po, ax(x — xo)". Let

1

R =

lim supy,_, o |ak|%
then R is the radius of convergence for S(z). Moreover,
1. S(x) converges absolutely Vx € (zg — R,xz0 + R)
2. S(x) converges uniformly on [a,b] C (o — R,z¢ + R)
3. When R < +o0, S(z) diverges for x ¢ [z — R, o + R

Proof. Define

1
R=

lim supy,_, . lax|*

Apply root test to S(x), define

==

r(z) = limsup ’ak(gc - xo)k‘
k—o0
= |z — zo| - limsup \ak|%
k—o0
_ |z — xo]
R
Case 1. R =0, then
400 ifx # xg
r(z) = :
0 if x = 2o
Then the theorem is proved
Case 2. R = +o0, then r(z) = 0. By root test, S(x) converges absolutely for all x € R.

Case 3. 0 < R < oco. Then by root test, S(x) converges absolutely if r(z) <1 <= |z — 29| < R
and diverges if r(z) > 1 < |z — 20| > R
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Suppose [a,b] C (xo — R, zo + R), then
0 <c<1.Vx€a,b] a|(z f:ro)’ﬂ <cF
By Weierstrass M-test, S(x) converges uniformly on [a, b]. O

Theorem 7.9 (Ratio Test). If p = limg_ 0o % exists as an extended real number, the p is the radius of
convergence for a power series.

Definition 7.8 (Interval of converges). The interval of convergence of a a power series S(x) is the interval
where S(x) converges.

Remark 7.1.
1. fR=0, then I = {xo}
2. IfR=+4o0, then I =R

3. If0 < R < 400, then I 'is (xg— R, 20+ R), [x0— R, 20+ R}, (xo — R, o+ R] or [xo — R, 2o+ R). Consider
r=x9— Rand z = zo + R.

Ex 7.3. Find the interval of convergence of

By ratio test,

When z = —1,

converge by alternating series test. When x = 1,
sm=Y L
k=1 vk
diverges by p-series test. Therefore, the interval of convergence is [—1,1).

Ex 7.4. Find the inteval of convergence of

1. >°02 a*. Apply ratio test: R = 1. When x = —1, Y ;2 (—1)* diverges by alternating series test. When
xz =1, > 7, 1diverges by p-series test. Therefore, the interval of convergence is (—1,1)

2.0 w Apply ratio test:

(=DF+t
. k+1 k
Iim ——— = lim —— =1
k—o00 ‘(—nk koo k4 1
k
When z = -1, Y77, % diverges by p-series test. When z =1, > p- (7;)]6 converges by alternating series

test. Therefore, the interval of convergence is (1, —1]

oo gk
3% B -1



