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Chapter 1

Sets and relations

1.1 Review on Sets

𝐵 = {2, 4, 6, 8}

𝑥 ∈ 𝐴

𝑥 ∉ 𝐴

2ℤ = {…, −6, −4, −2, 0, 2, 4, 6, …}, 2 ∈ 2ℤ, 3 ∉ 2ℤ

ℚ = {𝑎
𝑏 | 𝑎 ∈ ℤ, 𝑏 ∈ ℤ \ {0}}, 4.4 ∈ ℚ, 𝜋 ∉ ℚ

𝐼 = {[𝑎
𝑐

𝑏
𝑑] | 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ ∧ (𝑎

𝑐
𝑏
𝑑) ≠ 0}

𝐴,∅

ℚ is a proper subset of ℝ.

𝐴 ∩ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

𝐴 ∩ 𝐵 = ∅

𝐴 ∩ 𝐵 = {𝑎, 3}

∅ is disjoint from 𝐴.

𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}

{(𝑎, 𝑎), (𝑎, 0), (𝑎, 1), (𝑏, 𝑎), (𝑏, 0), (𝑏, 1), (𝑐, 𝑎), (𝑐, 0), (𝑐, 1)}

Definition . Let 𝐴, 𝐵 be sets, a function 𝑓 : 𝐴 → 𝐵 is a map that assigns each 𝑎 ∈ 𝐴 to 𝑓(𝑎) ∈
𝐵.

𝐴 is the domain and 𝐵 is the codomain of 𝑓 .

Definition . 𝑓(𝐴) = {𝑓(𝑎) | 𝑎 ∈ 𝐴} is the range of 𝑓 .

Definition . 𝑓  is one-to-one if 𝑓(𝑎1) = 𝑓(𝑎2) ⇒ 𝑎1 = 𝑎2
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Sets and relations

Definition . 𝑓  is a bijection if it is both one-to-one and onto; in this case, 𝑓  has an inverse
function 𝑓−1 : 𝐵 → 𝐴 where

𝑓(𝑎) = 𝑏 ⟺ 𝑎 = 𝑓−1(𝑏)

1.2 Equivalence relation

Theorem (Equivalence relation) . An Equivalence relation ∼ on a set 𝐴 is

1. (Reflexive) 𝑎 ∼ 𝑎
2. (Symmetric) 𝑎 ∼ 𝑏 ⇒ 𝑏 ∼ 𝑎
3. (Transitive) 𝑎 ∼ 𝑏, 𝑏 ∼ 𝑐 ⇒ 𝑎 ∼ 𝑐

Remark . Equality “=” is the strongest equivalence relation

Example (Eq. rel. 1) . 𝑆 = {Δ in the plane}, ∼ can be defined as

Δ1 ∼ Δ2 ⟺ Δ1, Δ2 are similar

Example (Eq. rel. 2) . Define ≡ on ℤ by

𝑎 ≡ 𝑏 ⟺ 𝑎 − 𝑏 is even
⟺ 𝑎 − 𝑏 = 2𝑛 for some 𝑛 ∈ ℤ

Definition (Equivalence class) . ∼ on 𝐴 and 𝑎 ∈ 𝐴, the equivalence class of 𝑎 is

𝑎 ≔ {𝑏 ∈ 𝐴 | 𝑎 ∼ 𝑏}

Remark . Equivalence classes partition the set.

Example (∼ on ℤ) . 5 ∈ [1] = {odd integers} = [5] = [−17] = …

1.3 Binary Operation

Definition (Binary Operation) . Let 𝑆 be a set. A binary operation on 𝑆 is a function ⋆ : 𝑆 ×
𝑆 → 𝑆.

For each (𝑎, 𝑏) ∈ 𝑆 × 𝑆, we write “a times b”

𝑎 ⋆ 𝑏 ≔ ⋆ ((𝑎, 𝑏))

Remark . A binary operation on 𝑆 is a way to multiply every pair of elements on 𝑆 and get an
element of 𝑆.

Example . “+”, addition, on ℤ is a binary operation. Since the sun of intergers is an interger,
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2 + (−3) = −1 ∈ ℤ

Substraction is also a binary operation on ℤ, since the difference of integers is an interger.

Example . 𝑀2(ℝ) = {[𝑎
𝑐

𝑏
𝑑] | 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}

Matrix multiplication is a binary operation on 𝑀2(ℝ).

Example . let 𝐶(ℝ) = {𝑓 : ℝ → ℝ | 𝑓 continuous}

Function composition, ∘ is a binary operation on 𝐶(ℝ). i.e. 𝑓, 𝑔 ∈ 𝐶(ℝ), then 𝑓 ∘ 𝑔 is continuous.

Definition . Let ⋆ be a binary operation on a set 𝑆. It is
1. commutative if

∀𝑎, 𝑏 ∈ 𝑆. 𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎

2. associative if

(𝑎 ⋆ 𝑏) ⋆ 𝑐 = 𝑎 ⋆ (𝑏 ⋆ 𝑐)

Example . “+”, addition, on ℤ is associative and commutative.

Example . Matrix multiplication is associative and not commutative.

Definition . Let ⋆ be a binary on a set 𝑆. A subset 𝐻 ⊆ 𝑆 is closed under ⋆ if

∀ℎ, 𝑔 ∈ 𝐻. ℎ ⋆ 𝑔 ∈ 𝐻

Example . ℝ with ⦁ is a binary operation. ℤ ⊆ ℝ closed under ⦁

Example . ℚ+ with ÷ is a binary operation. ℤ+ ⊆ ℚ+ is not closed under ÷

1.4 Isomorphic Binary Structure

Definition (Binary Structure) . A binary structure (𝑆, ⋆) is a set 𝑆 with a binary operation ⋆.

Example . (ℝ, +), (𝑀2, ⦁)

Definition (Identity Element) . An element 𝑒 ∈ 𝑆 is an identity element for ⋆ if

∀𝑎 ∈ 𝑆. 𝑒 ⋆ 𝑎 = 𝑎 ⋆ 𝑒 = 𝑎

Example .
• (ℝ, +) has identity element 0
• (𝑀2, ⦁) has identity element [1

0
0
1]

• (ℤ, ⦁) has identity element 1
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Theorem . If (𝑆, ⋆) has an identity element, then it is unique.

proof. Assume 𝑒, 𝑒′ ∈ 𝑆 are identity elements for ⋆, to show that 𝑒 = 𝑒′. Then

𝑒 = 𝑒 ⋆ 𝑒′ = 𝑒′

□

Definition (Isomorphic Binary Structure) . Let (𝑆, ⋆) and (𝑇 , ⦁) be binary structures. We say
they are isomorphic, denoted by 𝑆 ≅ 𝑇 , if there is a bijection 𝑓 : 𝑆 → 𝑇  such that

∀𝑎, 𝑏 ∈ 𝑆. 𝑓(𝑎 ⋆ 𝑏) = 𝑓(𝑎) ⦁ 𝑓(𝑏)

In this case, 𝑓  is called an isomorphism.

Remark . 𝑆 ≅ 𝑇  means that 𝑆 and 𝑇  are the same in terms of their binary operation up to relabeling.

Theorem . If 𝑓 : (𝑆, ⋆) → (𝑇 , ⋆) is an isomorphism of binary structures, then the inverse
bijection 𝑓−1 : 𝑇 → 𝑆 is an isomorphism. That is

∀𝑥, 𝑦 ∈ 𝑇 . 𝑓−1(𝑎 ⦁ 𝑏) = 𝑓−1(𝑎) ⋆ 𝑓−1(𝑏)

proof. Exercise (see note on blackboard) □
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Chapter 2

Groups and subgroups

2.1 Groups

Definition (Group) . A group (𝐺, ⦁) is a set 𝐺 with a binary operation ⦁ on 𝐺 such that
1) ⦁ is associative
2) has an identity element 𝑒 ∈ 𝐺 s.t. ∀𝑎 ∈ 𝐺. 𝑎 ⦁ 𝑒 = 𝑒 ⦁ 𝑎 = 𝑎
3) has inverses ∀𝑔 ∈ 𝐺. 𝑔 ⦁ 𝑔−1 = 𝑔−1 ⦁ 𝑔 = 𝑒

We say a group (𝐺, ⦁) is abelian if ⦁ is commutative.

Example . (ℤ, +) is an abelian group
• + is associative and commutative
• 0 is the identity element
• The inverse of 𝑎 ∈ ℤ is −𝑎

(ℚ, +) and (ℝ, +) are also abelian groups

Example . (ℝ+, ⦁) is abelian group.
• ⦁ is associative and commutative
• 1 is the identity element
• The inverse of 𝑎 ∈ ℝ+ is 1

𝑎

Example . Let

𝑆 = {[𝑎
𝑐

𝑏
𝑑] ∈ 𝑀2(ℝ) | 𝑎𝑑 − 𝑏𝑐 ≠ 0}

Then (𝑆, ⦁) is a group is an example of a non-abelian group.
• [1

0
0
1] is the identity element

• The inverse of [𝑎
𝑐

𝑏
𝑑] is 1

𝑎𝑑−𝑏𝑐[
𝑑

−𝑐
−𝑏
𝑎 ]

Example . 𝑆 = {𝐴 ∈ 𝑀𝑛(ℝ) | det(𝐴) ≠ 0} is a group under matrix multiplication.

Example . 𝑆3 = {bijection from {1, 2, 3} to itself} with composition as the binary operation is a
group. There are 3! elements in 𝑆3.
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Proposition .
1. The identity element of a group is unique.
2. Inverses are unique.
3. Cancellation law: 𝑎 ⦁ 𝑏 = 𝑎 ⦁ 𝑐 ⇒ 𝑏 = 𝑐
4. 𝑔(−1)−1  = g
5. (𝑔 ⦁ ℎ)−1 = ℎ−1 ⦁ 𝑔−1

2.2 Subgroups

Definition (Order) . The order of a group 𝐺 is

|𝐺| = {number of elements in 𝐺 if 𝐺 finite
∞ if 𝐺 infinite

Definition (subgroup) . Let (𝐺, ⦁) be a group. A subgroup of 𝐺 is a subset 𝐻 ⊆ 𝐺 such that
the restriction of ⦁ on 𝐻 makes 𝐻 a group. We write 𝐻 ≤ 𝐺.

Remark . 𝐻 being a subgroup of (𝐺, ⦁) means that
1. ⦁ is a binary operation on 𝐻
2. 𝑒 ⊆ 𝐻
3. ∀ℎ ∈ 𝐻. ℎ−1 ⊆ 𝐻

Example . {−1, 1} is a subgroup of (ℝ ∖ {0}, ⦁). (−1)−1 = −1 ∈ {−1, 1}.

Example .

𝐻 ≔ {[𝑎
0

0
𝑏] | 𝑎, 𝑏 ≠ 0} ≤ {[𝑎

𝑐
𝑏
𝑑] | 𝑎𝑑 − 𝑏𝑐 ≠ 0}

Let [𝑎
0

0
𝑏], [𝑐

0
0
𝑑] ∈ 𝐻

[1
0

0
1] ∈ 𝐻

[𝑎
0

0
𝑏]

−1

= [
𝑎
1
0

0
𝑏
1
] ∈ 𝐻

[𝑎
0

0
𝑏] ⦁[𝑐

0
0
𝑑] = [𝑎𝑐

0
0
𝑏𝑑] ∈ 𝐻

Definition (Proper subgroup) . Let 𝐻 ≤ 𝐺, we say 𝐻 is a proper subgroup of 𝐺 if 𝐻 ≠ 𝐺.
We write 𝐻 < 𝐺. If 𝐻 = {𝑒}, then 𝐻 is called the trivial subgroup. Otherwise 𝐻 is called a
nontrivial subgroup.
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Groups and subgroups

Theorem (Subgroup test) . Let (𝐺, ⦁) be group, and 𝐻 ⊆ 𝐺, then 𝐻 is a subgroup of 𝐺 iff 𝐻 ≠
∅ and ∀𝑎, 𝑏 ∈ 𝐻. 𝑎 ⦁ 𝑏−1 ∈ 𝐻.

Example . Let 𝐻 ≔ {[1
0

𝑎
1] | 𝑎 ∈ ℝ}. Then 𝐻 is a subgroup of 𝑀2(ℝ).

proof. 𝐻 is not empty. Now take 𝐴 = [1
0

𝑎
1], 𝐵 = [1

0
𝑏
1] ∈ 𝐻. Then

𝐵−1 = [1
0

−𝑏
1 ]

𝐴𝐵−1 = [1
0

𝑎
1][1

0
−𝑏
1 ] = [1

0
𝑎 − 𝑏

1 ] ∈ 𝐻

□

Definition . Let (𝐺, ⦁) be a group and 𝑔 ∈ 𝐺. For 𝑛 ∈ ℤ define

𝑔𝑛 ≔

{{
{{
{{
{{
{{
{ 𝑛 times

⏞𝑔 ⦁ … ⦁ 𝑔 if 𝑛 > 0
𝑒

if 𝑛 = 0
(𝑔−1) ⦁ … ⦁(𝑔−1)⏟⏟⏟⏟⏟⏟⏟

𝑛 times

if 𝑛 < 0

Definition . Let (𝐺, ⦁) be a group and 𝑔 ∈ 𝐺. The cyclic subgroup generated by 𝑔 is

⟨𝑔⟩ ≔ {𝑔𝑛 | 𝑛 ∈ ℤ}

Example . 𝐺 = (ℤ, +),

⟨−1⟩ = ℤ
⟨2⟩ = 2ℤ
⟨3⟩ = 3ℤ

⋮

Example . 𝐺 = 𝑆3,

⟨(1 2)⟩ = {id, (1 2)}
⟨(1 2 3)⟩ = {id, (1 2 3), (1 3 2)}

Proposition . For a group 𝐺, ⟨𝑔⟩ ≤ 𝐺 for all 𝑔 ∈ 𝐺.

proof. Since 𝑔 ∈ ⟨𝑔⟩, 𝐺 ≠ ∅. Let 𝑎, 𝑏 ∈ ⟨𝑔⟩, then by definition, 𝑎 = 𝑔𝑚 and 𝑏 = 𝑔𝑛 for some
𝑚, 𝑛 ∈ ℤ.
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𝑎 ⦁ 𝑏−1 = 𝑔𝑚 ⦁ (𝑔𝑛)−1

= 𝑔𝑚 ⦁ 𝑔−𝑛

= 𝑔𝑚−𝑛 ∈ ⟨𝑔⟩

Thus 𝑎𝑏−1 ∈ ⟨𝑔⟩ and so by theorem we have ⟨𝑔⟩ ≤ 𝐺. □

Definition . A group 𝐺 is cyclic if there exists 𝑔 ∈ 𝐺 such that 𝐺 = ⟨𝑔⟩. In this case, 𝑔 is called
a generator of 𝐺.

Proposition . Every cyclic group is abelian.

proof. Let 𝐺 be cyclic, then there is 𝑔 ∈ 𝐺 such that 𝐺 = ⟨𝑔⟩ and ⟨𝑔⟩ is abelian. Thus 𝐺 is abelian.
□

Theorem . Every subgroup of a cyclic group is cyclic.

proof. Let 𝐺 cyclic and 𝐻 ≤ 𝐺. If 𝐻 = {𝑒}, then 𝐻 is cyclic. Otherwise, let 𝑔 ∈ 𝐺 be a generator
of 𝐺 and 𝑚 be the smallest positive integer such that 𝑔𝑚 ∈ 𝐻. Show that 𝐻 ⊆ ⟨𝑔𝑚⟩. Let ℎ ∈ 𝐻,
then ℎ = 𝑔𝑛 for some 𝑛 ∈ ℤ. Using Division Algorithm on ℤ, there exists 𝑞, 𝑟 ∈ ℤ with 0 ≤ 𝑟 ≤
𝑚 such that

𝑛 = 𝑞𝑚 + 𝑟

Also, note that (𝑔𝑚)−𝑞 ∈ 𝐻 since (𝑔𝑚)−𝑞 ∈ ⟨𝑔𝑚⟩ ⊆ 𝐻. Finally, we obtain that

(𝑔𝑚)−𝑔ℎ ∈ 𝐻

Now notice

(𝑔𝑚)−𝑞ℎ = (𝑔𝑚)−𝑞𝑔𝑛

= 𝑔−𝑚𝑞 ⦁ 𝑔𝑛

= 𝑔−𝑚𝑞 ⦁ 𝑔𝑞𝑚+𝑟

= 𝑔−𝑚𝑞+𝑞𝑚+𝑟

= 𝑔𝑟 ∈ ⟨𝑔𝑚⟩

By the choice of 𝑚 and since 0 ≤ 𝑟 < 𝑚 with 𝑔𝑟 ∈ 𝐻, we conclude that 𝑟 = 0. Therefore, 0 =
𝑛 = 𝑔𝑚 and hence

ℎ = 𝑔𝑛 = 𝑔𝑞𝑚 = (𝑔𝑚)𝑞 ∈ ⟨𝑔𝑚⟩

thus, 𝐻 ⊆ ⟨𝑔𝑚⟩ and so 𝐻 = ⟨𝑔𝑚⟩. Therefore, by definition, 𝐻 is cyclic. □

Corollary . Every subgroup of (ℤ +) has the form 𝑛ℤ = ⟨𝑛⟩ for some 𝑛 ∈ ℤ.
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Example . Fix 𝑚 ∈ ℤ with 𝑚 > 0. Let

ℤ𝑚 = {0, 1, …, 𝑚 − 1}

and defines + on ℤ𝑚 by 𝑎 + 𝑏 = 𝑟 where 𝑟 < 𝑚 ≡ 𝑎 + 𝑏 (mod 𝑚).

Remark . + is an associative, commutative binary operation on ℤ𝑚. Also 0 is the identity element
and 𝑎−1 = 𝑚 − 𝑎 is the inverse of 𝑎.

Definition . Let (𝐺, ⦁), (𝐻, ⋆) be groups, we say 𝐺 is isomorphic to 𝐻 if they are isomorphic
as binary structures. We write 𝐺 ≅ 𝐻.

Remark . 𝐺 ≅ 𝐻 means there is a bijection 𝑓 : 𝐺 → 𝐻, called a group isomorphism, such that

𝑓(𝑔1 ⦁ 𝑔2) = 𝑓(𝑔1) ⋆ 𝑓(𝑔2)

for all 𝑔1, 𝑔2 ∈ 𝐺.

Example . let 𝐺 = (ℤ2, +), 𝐻 = ({−1, 1}, ⦁), claim 𝐺 ≅ 𝐻.

proof. Define 𝑓 : ℤ2 → {−1, 1} be 𝑓(0) = 1 and 𝑓(1) = −1. Then

𝑓(0 + 0) = 𝑓(0) = 1 = 1 ⦁ 1 = 𝑓(0) ⦁ 𝑓(0)
𝑓(1 + 0) = 𝑓(1) = −1 = −1 ⦁ 1 = 𝑓(1) ⦁ 𝑓(0)
𝑓(1 + 1) = 𝑓(1) = 1 = −1 ⦁ −1 = 𝑓(0) ⦁ 𝑓(0))

thus 𝑓  is an isomorphism. □

Example . ℤ6 ≇ 𝑆3 because ℤ6 is abelian and cyclic and 𝑆3 is not.

Example . Let 𝐺 = ℤ4, 𝐻 = ({±𝑖, ±1}, ⦁), 𝐺 ≅ 𝐻 by

𝑓 : 𝐺 ⟶ 𝐻
0 ⟼ 1
1 ⟼ 𝑖
2 ⟼ −1
3 ⟼ −𝑖

Definition (Order of group element) . Let 𝐺 be a group and 𝑔 ∈ 𝐺, then order of 𝑔 is the
smallest positive integer such that 𝑔𝑛 = 𝑒. If there is no 𝑚 then |𝑔| ≔ ∞.

Example . 𝐺 = ℤ4, then |2| = 1, |3| = 4, |1| = 4, |0| = 1.

Example . 𝐺 = 𝑆3, |(123)| = 3

Lemma . Let 𝐺 be a group and 𝑔 ∈ 𝐺 where |𝑔| = 𝑚 < ∞. Then

⟨𝑔⟩ = {𝑒, 𝑔, 𝑔2, …, 𝑔𝑚−1}
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Theorem . Let 𝐺 = ⟨𝑔⟩ cyclic, then

𝐺 ≅ {ℤ if |𝐺| = ∞
ℤ𝑛 if |𝐺| = 𝑛

and more over, when 𝐺 ≅ ℤ𝑚 then |𝑔| = 𝑚.

proof. When |𝐺| = ∞, want to show 𝐺 ≅ ℤ. Define 𝑓 : ℤ → 𝐺 by 𝑓(𝑛) = 𝑔𝑛. Then

𝑓(𝑛 + 𝑚) = 𝑔𝑛+𝑚 = 𝑔𝑛 ⦁ 𝑔𝑚 = 𝑓(𝑛) + 𝑓(𝑚)

It’s clear that 𝑓  is surjective. Still need to show it’s injective. Suppose it’s not, then there’re
𝑔𝑘, 𝑔𝑛 ∈ 𝐺 where 𝑘 ≠ 𝑛 and 𝑓(𝑘) = 𝑓(𝑛). But

𝑓(𝑔𝑘) = 𝑓(𝑔𝑛) ⇒ 𝑔𝑘 = 𝑔𝑛 ⇒ 𝑔𝑘−𝑛 = 𝑒

which means |𝑔| ≤ 𝑘 − 𝑛 < ∞, a contradiction. Thus 𝑓  is injective, hence an isomorphism. □

Fact (Euclidean Algorithm) . 𝑚, 𝑛 ∈ ℤ, their gcd is denoted by gcd(𝑚, 𝑛) is the largest integer
that divides both 𝑚 and 𝑛. There exists 𝑎, 𝑏 ∈ ℤ such that

gcd(𝑚, 𝑛) = 𝑎𝑚 + 𝑏𝑛

we say 𝑚 and 𝑛 are relatively prime if gcd(𝑚, 𝑛) = 1.

Example . gcd(5, 7) = 1, 5, 7 relatively prime.

1 = 3 ⦁ 5 + (−2) ⦁ 7

Theorem . Let 𝐺 = ⟨𝑔⟩ with 𝐺 ≅ ℤ𝑚, then

|𝑔𝑛| = 𝑚
gcd(𝑚, 𝑛)

In particular, 𝑔𝑛 is a generator for 𝐺 iff 𝑚, 𝑛 are relatively prime.

Example . ℤ8 = {0, 1, 2, 3, 4, 5, 6, 7}, the theorem says 1, 3, 5, 7 are generators! Also, it says

|2| = 8
gcd(8, 2)

= 4

Definition . Let 𝑚 ∈ ℤ with 𝑚 > 0. Define

𝜑(𝑚) = |{𝑛 ∈ ℤ | 0 ≤ 𝑛 < 𝑚 ∧ gcd(𝑚, 𝑛) = 1}|

Corollary . If 𝐺 ≅ ℤ𝑚, then 𝐺 has 𝜑(𝑚) generators.

11
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Fact . If 𝑘, 𝑚 > 0 ∈ ℤ and gcd(𝑘, 𝑚) = 1, then

𝜑(𝑘𝑚) = 𝜑(𝑘)𝜑(𝑚)

Example . The Klein 4-group is

𝑉4 ≔ {[1
0

0
1], [1

0
0

−1], [−1
0

0
1], [−1

0
0

−1]}

with matrix multiplication. It is a subgroup of 𝑀2(ℝ).

Remark . 𝑉4 is the smallest group that is not cyclic.

2.3 Generating sets

Proposition . Let 𝐺 be a group and consider a collection of subgroups {𝐻𝑖}𝑖∈𝐼  of 𝐺. Then
⋂𝑖∈𝐼 𝐻𝑖 is a subgroup of 𝐺. In particular, if 𝐻, 𝐾 ≤ 𝐺 then 𝐻 ∩ 𝐾 ≤ 𝐺.

proof. Since each 𝐻𝑖 is a subgroup of 𝐺, we have 𝑒 ∈ 𝐻𝑖 for all 𝑖 ∈ 𝐼 . Hence by definition, 𝑒 ∈
⋂𝑖∈𝐼 𝐻𝑖, therefore ⋂𝑖∈𝐼 𝐻𝑖 ≠ ∅. Let 𝑎, 𝑏 ∈ ⋂𝑖∈𝐼 𝐻𝑖. By definition, 𝑎, 𝑏 ∈ 𝐻𝑖 for all 𝑖 ∈ 𝐼 . Also,
since 𝐻𝑖 is a subgroup and 𝑏 ∈ 𝐻𝑖 for all 𝑖 ∈ 𝐼 , we have that 𝑏−1 ∈ 𝐻𝑖 for all 𝑖 ∈ 𝐼 . Thus 𝑎𝑏−1 ∈
𝐻𝑖 for all 𝑖 ∈ 𝐼  and so 𝑎𝑏−1 ∈ ⋂𝑖∈𝐼 𝐻𝑖. Therefore, by the subgroup test, ⋂𝑖∈𝐼 𝐻𝑖 ≤ 𝐺. □

Definition . The subgroup generated by 𝑆 is

⟨𝑆⟩ ≔ ⋂
𝑆≤𝐻≤𝐺

𝐻

That is, ⟨𝑆⟩ is the intersection over all subgroups of 𝐺 containing 𝑆 when 𝑆 = {𝑎1, …, 𝑎𝑛}, we
write ⟨𝑎1, …, 𝑎𝑛⟩ for ⟨𝑆⟩.

Remark . ⟨𝑆⟩ is the smallest subgroup of 𝐺 containing 𝑆.

Fact . 𝑆 ≤ 𝐻 ⇒ ⟨𝑆⟩ ≤ 𝐻

Proposition . Let 𝑛 be a positive number

Every permutation is a product of transpositions. That is,

{(𝑖 𝑗) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}

is a generating set of 𝑆𝑛.

12
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2.4 Orbits, Cycles and Alternating Groups

Proposition . No permutation is a product of an even number of transpositions and a product
of an odd number of transpositions.

proof. Let 𝜎 ∈ 𝑆𝑛 and write

𝜎 = 𝜏1𝜏2…𝜏𝑚 with each 𝜏𝑖 a transposition

Think of 𝜎 or each 𝜏𝑖 as permuting the standard basis 𝑒1, 𝑒2, …, 𝑒𝑛 for ℝ𝑛, and write 𝐴𝜎 or 𝐴𝜏𝑖

as the corresponding matrix. Then

𝐴𝜎 = 𝐴𝜏1
𝐴𝜏2

…𝐴𝜏𝑚

and

det(𝐴𝜏) = det(𝐴𝜏1
) det(𝐴𝜏2

)… det(𝐴𝜏𝑚
)

= (−1)𝑚

Since det(𝐴𝜏) is a well-defined function on 𝑆𝑛, it follows that any choice is either even or odd.
□

Definition . Let 𝜎 ∈ 𝑆𝑛 and write 𝜎 = 𝜏1𝜏2…𝜏𝑚 where each 𝜏𝑖 is a transposition. If 𝑚 is even,
then 𝜎 is called an even permutation and if 𝑚 is odd, then 𝜎 is called an odd permutation.

Example . 𝜎 = (1 2 3)(4 5) = (1 2)(2 3)(4 5), 𝜎 is odd

Example . id is a product of 0 transpositions, so it is even.

Example . Transpositions are odd.

Example . 𝜎 = (1 2 3 4 5) = (1 2)(2 3)(3 4)(4 5)

Definition (Alternating Groups) . The alternating group 𝐴𝑛 is the set of all even permutations
in 𝑆𝑛

𝐴𝑛 ≔ {𝜎 ∈ 𝑆𝑛 | 𝜎 is even}

Example . 𝐴3 = {id, (1 2 3), (1 3 2)}

Example . 𝐴4 = {id, (1 2 3), (1 3 2), (1 3 4), …}

Proposition . 𝐴𝑛 is always a subgroup of 𝑆𝑛 with order 𝑛!
2 .

13
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2.5 Cosets and Lagrange’s Theorem

Definition (Coset) . Fix a group 𝐺 and 𝐻 ≤ 𝐺. For 𝑔 ∈ 𝐺, define the left coset 𝐻 containing 𝑔
to be

𝑔 ⦁ 𝐻 ≔ {𝑔ℎ | ℎ ∈ 𝐻}

the right coset 𝐻 containing 𝑔 to be

𝐻 ⦁ 𝑔 ≔ {ℎ𝑔 | ℎ ∈ 𝐻}

Example . 𝐺 = ⟨ℤ, +⟩ and 𝐻 = 4ℤ = ⟨4⟩. Find the left coset of 𝐻.

0 + 𝐻 = {…, −8, −4, 0, 4, 8, …}
1 + 𝐻 = {…, −7, −3, 1, 5, 9, …}
2 + 𝐻 = {…, −6, −2, 2, 6, 10, …}
3 + 𝐻 = {…, −5, −1, 3, 7, 11, …}

4 + 𝐻 = 0 + 𝐻

Example . 𝐺 = 𝑆3 and 𝐻 = ⟨(1 2 3)⟩,

𝐻 = id 𝐻 = {id, (1 2 3), (1 3 2)}
(1 3)𝐻 = (1 2)𝐻 = {(1 2), (2 3), (1 3)}

Lemma .
1. 𝑎𝐻 ≠ ∅ for all 𝑎 ∈ 𝐺
2. 𝑎𝐻 = 𝑏𝐻 ⟺ 𝑎−1𝑏 ∈ 𝐻
3. If 𝑎𝐻 ∩ 𝑏𝐻 ≠ ∅, then 𝑎𝐻 = 𝑏𝐻
4. ⋃𝑎∈𝐺 𝑎𝐻 = 𝐺

proof.
1. 𝑒 ∈ 𝐻 since 𝐻 ≤ 𝐺 and hence

𝑎 = 𝑎 ⦁ 𝑒 ∈ 𝑎𝐻

thus 𝑎𝐻 ≠ ∅ for all 𝑎 ∈ 𝐺.
2. (⟹) Assume 𝑎𝐻 = 𝑏𝐻. Notice that 𝑏 = 𝑏 ⦁ 𝑒 ∈ 𝑏𝐻 and since 𝑏𝐻 = 𝑎𝐻, we have 𝑏 ∈ 𝑎𝐻. By

definition of 𝐻, there exists ℎ ∈ 𝐻 such that

𝑏 = 𝑎ℎ

Multiplying both sides 𝑎−1 yields:

𝑎−1𝑏 = 𝑎−1(𝑎ℎ)

= (𝑎−1𝑎)ℎ
= 𝑒ℎ

14
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= ℎ

Thus, 𝑎−1𝑏 = ℎ ∈ 𝐻

(⟸) Omitted
3. Assume 𝑎𝐻 ∩ 𝑏𝐻 ≠ ∅, there exists 𝑥 ∈ 𝑎𝐻 ∩ 𝑏𝐻. By definition there exists ℎ1, ℎ2 ∈ 𝐻 such

that

𝑥 = 𝑎ℎ1 = 𝑏ℎ2

Multiplying both sides by 𝑎−1 gives:

ℎ1 = 𝑎−1𝑎ℎ1 = 𝑎−1𝑏ℎ2

Multiplying ℎ−1
2  on the right:

ℎ1ℎ−1
2 = 𝑎−1𝑏

Since 𝑎−1𝑏 ∈ 𝐻, then by 2

𝑎𝐻 = 𝑏𝐻
4. We already showed in 1 that 𝑎 ∈ 𝑎𝐻, so ⋃𝑎∈𝐺 𝑎𝐻 = 𝐺

□

Remark . The lemma also holds for right cosets.

Example . 𝐺 = (ℤ, +) and 𝐻 = ⟨5⟩,

5ℤ = 𝐻 = {…, −5, 0, 5, …}
1 + 5ℤ = 1 + 𝐻 = {…, −4, 1, 6, …}
2 + 5ℤ = 2 + 𝐻 = {…, −3, 2, 7, …}
3 + 5ℤ = 3 + 𝐻 = {…, −2, 3, 8, …}
4 + 5ℤ = 4 + 𝐻 = {…, −1, 4, 9, …}

are the distinct left cosets and partition ℤ.

Definition (Index) . The index of 𝐻 ≤ 𝐺 is the number of distinct left cosets of 𝐻 in 𝐺. We write

|𝐺 : 𝐻|

Example . 𝐺 = ℤ and 𝐻 = ⟨4⟩, |𝐺 : 𝐻| = |ℤ : ⟨4⟩| = 4

15
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Theorem (Lagrange's Theorem) . Let 𝐺 be a finite group and 𝐻 ≤ 𝐺, then

|𝐺| = |𝐻| |𝐺 : 𝐻|

in particular, |𝐻| divides |𝐺|.

proof. Let 𝑛 = |𝐺 : 𝐻|, and 𝑎1𝐻, …, 𝑎𝑛𝐻 be the distinct left cosets of 𝐻. Note by the lemma

𝐺 = ⋃
𝑛

𝑖=1
𝑎𝑖𝐻 with 𝑎𝑖𝐻 ∩ 𝑎𝑗𝐻 = ∅ for 𝑖 ≠ 𝑗

then,

|𝐺| = |⋃
𝑛

𝑖=1
𝑎𝑖𝐻| = ∑

𝑛

𝑖=1
|𝑎𝑖𝐻|

Claim . |𝑎𝑖𝐻| = |𝐻| for all 𝑖

proof. Define 𝑓 : 𝐻 → 𝑎𝑖𝐻 by 𝑓(ℎ) = 𝑎𝑖ℎ. 𝑓  is surjective and if 𝑓(ℎ1) = 𝑓(ℎ2), 𝑎𝑖ℎ1 = 𝑎𝑖ℎ2
gives ℎ1 = ℎ2, hence injective. Therefore, 𝑓  is a bijection and |𝑎𝑖𝐻| = |𝐻|. □

Thus,

|𝐺| = ∑
𝑛

𝑖=1
|𝐻| = 𝑛|𝐻| = |𝐺 : 𝐻| |𝐻|

□

Example . 𝐺 = 𝑆4,

|𝐺 : ⟨(1 2 3 4)⟩| = |𝐺|
|𝐻|

= 4!
4

= 6

Example . 𝐺 = 𝑆𝑛 and 𝐻 = 𝐴𝑛,

|𝐺 : 𝐻| = |𝑆𝑛 : 𝐴𝑛| = 𝑛!
|𝐴𝑛|

= 𝑛!
𝑛!
2

= 2

therefore there are two distinct left cosets of 𝐴𝑛 in 𝑆𝑛.
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Corollary . If |𝐺| = 𝑝 is prime, then

𝐺 ≅ ℤ𝑝

in particular, 𝐺 is cyclic.

proof. Let 𝑔 ∈ 𝐺 and 𝑔 ≠ 𝑒, assume 𝑝 = |𝐺| = |⟨𝑔⟩||𝐺 : ⟨𝑔⟩|. Since |⟨𝑔⟩| > 1 and 𝑝 is prime, then
|⟨𝑔⟩| = 𝑝 and |𝐺 : ⟨𝑔⟩| = 1. Finally, since |⟨𝑔⟩| = |𝑔| = 𝑝, by a theorem earlier we have that

𝐺 ≅ ℤ𝑝

□

Corollary . If 𝑔 ∈ 𝐺, then |𝑔| divides |𝐺|

Example . True of False: There exists a group with 24 elements that contains an element of order 9.

Answer . False! Corollary says 9 would have to divide 24.

2.6 Finitely Generated Abelian Groups

Definition (Direct Product) . Given groups 𝐺1, …, 𝐺𝑛, there direct product is the group

𝐺1 × … × 𝐺𝑛 ≔ {(𝑔1, …, 𝑔𝑛) | 𝑔𝑖 ∈ 𝐺𝑖}

and

(𝑔1, …, 𝑔𝑛) ⦁(ℎ1, …, ℎ𝑛) ≔ (𝑔1 ⦁ ℎ1, …, 𝑔𝑛 ⦁ ℎ𝑛)

Theorem . ℤ𝑚 × ℤ𝑛 ≅ ℤ𝑚𝑛 when gcd(𝑚, 𝑛) = 1

Example .

ℤ3 × ℤ5 × ℤ8 ≅ ℤ15 × ℤ8

≅ ℤ120

in particular, ℤ3 × ℤ5 × ℤ8 is cyclic.

Example . Is ℤ𝑝 × ℤ𝑝 ≅ ℤ𝑝2?

Answer . No, gcd(𝑝, 𝑝) = 𝑝, so the theorem doesn’t apply.

Corollary . Let 𝑛 = 𝑝𝑡1
1 ⦁ … ⦁ 𝑝𝑡𝑘

𝑘  be a prime factorization of 𝑛, then

ℤ𝑛 ≅ ℤ𝑝𝑡1
1

× … × ℤ𝑝𝑡𝑘
𝑘
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Theorem . Let 𝐺1, …, 𝐺𝑛 be groups with 𝑔𝑖 ∈ 𝐺𝑖. Set 𝑚𝑖 ≔ |𝑔𝑖| < ∞ for each 1 ≤ 𝑖 ≤ 𝑛. Then

|(𝑔1, …, 𝑔𝑛)| = lcm(𝑚1, …, 𝑚𝑛)

Proposition . 𝐺, 𝐻 groups, then

𝐺 × 𝐻 ≅ 𝐻 × 𝐺

Need to know how to prove this. More generally, if 𝐺1, …, 𝐺𝑛 groups, 𝜎 ∈ 𝑆𝑛,

𝐺1 × … × 𝐺𝑛 ≅ 𝐺𝜎(1) × … × 𝐺𝜎(𝑛)

Example .

ℤ3 × ℤ20 × 𝑆4 ≅ 𝑆4 × ℤ20 × ℤ3

≅ ℤ20 × ℤ3 × 𝑆4

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups) . Let 𝐺 be a finitely
generated abelian group. Then there exists a unique integer 𝑛 and unique primes 𝑝1, …, 𝑝𝑘
such that

𝐺 ≅ ℤ𝑝𝑟1
1

× … × ℤ𝑝𝑟𝑘
𝑘

×
𝑡

⏞⏞⏞⏞⏞ℤ × … × ℤ

where 𝑝𝑖 is a prime number (not necessarily distinct) and 𝑡, 𝑛 and the factors are unique up
to isomorphism.

Remark . if 𝐺 is a finite abelian group, then

𝐺 ≅ ℤ𝑝𝑟1
1

× … × ℤ𝑝𝑟𝑘
𝑘

with 𝑝𝑖 not necessarily distinct primes and decomposition is unique up to reordering.

Example . ℤ2 is the only group up to isomorphism of order 2.

Example . 𝑉4 = {𝐼2, 𝐴, 𝐵, 𝐶} ≅ ℤ2 × ℤ2, and 𝑍4 is another abelian group of order 4.

Example . How many abelian groups of order 36 are there up to isomorphism?

36 = 22 ⦁ 32 = 2 ⦁ 2 ⦁ 32. By FTFGAG, there are 4 groups
1. ℤ4 × ℤ9
2. ℤ2 × ℤ2 × ℤ9
3. ℤ2 × ℤ2 × ℤ3 × ℤ3
4. ℤ4 × ℤ3 × ℤ3

In group 1-4, what’s the largest order an element has in the group?

• 36 since 𝐺 ≅ ℤ36
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• |(1 1 1)| = lcm(|1|, |1|, |1|) = 18
• |(1 1 1 1)| = 6
• |(1 1 1)| = 12

Example . How many abelian groups of order 80 are there up to isomorphism?

• ℤ16 × ℤ5
• ℤ4 × ℤ4 × ℤ5
• ℤ8 × ℤ2 × ℤ5
• ℤ2 × ℤ2 × ℤ2 × ℤ2 × ℤ5
• ℤ2 × ℤ2 × ℤ4 × ℤ5

Example . How many abelian groups of order 48 are there up to isomorphism?

48 = 3 ⦁ 24

• ℤ3 × ℤ16
• ℤ3 × ℤ4 × ℤ4
• ℤ3 × ℤ8 × ℤ2
• ℤ3 × ℤ4 × ℤ2 × ℤ2
• ℤ3 × ℤ2 × ℤ2 × ℤ2 × ℤ2

Lemma . Let 𝐺1, …, 𝐺𝑛 be groups and 𝐻𝑖 ≤ 𝐺𝑖 for each 𝑖 = 1, …, 𝑛. Then 𝐻1 × … × 𝐻𝑛 ≤
𝐻1 × … × 𝑔𝑛

Theorem . Let 𝐺 be a finite abelian group. If 𝑚 divides |𝐺|, then there exists 𝐻 ≤ 𝐺 such that
|𝐻| = 𝑚.

proof. By FTFGAG, 𝐺 ≅ ∏𝑛
𝑖=1 ℤ𝑝𝑟𝑖

𝑖
 with 𝑝𝑖 prime. Since 𝑚 devides |𝐺| = ∏𝑛

𝑖=1 𝑝𝑎𝑖
𝑖  with 𝑎𝑖 ≤ 𝑟𝑖.

|1𝑟𝑖−𝑎𝑖 | = 𝑝𝑟𝑖
𝑖

gcd(𝑝𝑟𝑖
𝑖 , 𝑝𝑟𝑖−𝑎𝑖

𝑖 )

= 𝑝𝑟𝑖
𝑖

𝑝𝑟𝑖−𝑎𝑖
𝑖

= 𝑝𝑎𝑖
𝑖

So in ℤ𝑝𝑟𝑖
𝑖

, |⟨1𝑟𝑖−𝑎𝑖⟩| = 𝑝𝑎𝑖
𝑖 . Set

𝐻𝑖 ≔ ⟨⟩

□
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2.7 Group Homomorphisms

Definition (Group Homomorphism) . Let 𝐺, 𝐻 be groups, A group homomorphism is a
function 𝜑 : 𝐺 → 𝐻 such that

𝜑(𝑔1 ⦁ 𝑔2) = 𝜑(𝑔1) ⦁ 𝜑(𝑔2)

for all 𝑔1, 𝑔2 ∈ 𝐺.

Remark . Every isomorphism is a homomorphism.

Note . A bijective homomorphism is an isomorphism.

Example . 𝑆𝐿2(ℝ) is the special linear group of 2 × 2 metrices.

𝐺 = 𝑆𝐿2(ℝ) ≔ {[𝑎
𝑐

𝑏
𝑑] | 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, 𝑎𝑑 − 𝑏𝑐 ≠ 0}

define

det : 𝐺 ⟶ ℝ ∖ {0}
𝐴 ⟼ det(𝐴)

also, ℝ ∖ {0} is a group with multiplication. From linear algebra, if 𝐴, 𝐵 ∈ 𝐺,

det(𝐴𝐵) = det(𝐴) ⦁ det(𝐵)

hence det is a group homomorphism but not an isomorphism.

Example . Let

𝜑 : 𝑍 ⟶ 𝑍2

𝜑(𝑛) = {0 if 𝑛 is even
1 if 𝑛 is odd

This is a group homomorphism. Let 𝑚, 𝑛 ∈ ℤ,

Case 1. 𝑚, 𝑛 both even, then 𝜑(𝑚 + 𝑛) = 0 = 0 + 0 = 𝜑(𝑚) + 𝜑(𝑛)
Case 2. 𝑚 even, 𝑛 odd, then 𝜑(𝑚 + 𝑛) = 1 = 0 + 1 = 𝜑(𝑚) + 𝜑(𝑛)
Case 3. 𝑚, 𝑛 both odd, then 𝜑(𝑚 + 𝑛) = 0 = 1 + 1 = 𝜑(𝑚) + 𝜑(𝑛)

Therefore , 𝜑 is a group homomorphism. Also, 𝜑 is not an isomorphism.

Example . Define

𝜑 : ℤ3 ⟶ 𝑆3 by
0 ⟼ id
1 ⟼ (1 2 3)
2 ⟼ (1 3 2)

This is a group homomorphism.
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Example . 𝜑 : ℤ ⟶ ℤ, 𝜑(𝑛) = 8𝑛 is a group homomorphism.

Example (Trivial Homomorphism) . Let 𝐺, 𝐻 be groups, then the trivial homomorphism is the
function 𝜑 : 𝐺 → 𝐻 defined by 𝜑(𝑔) = 𝑒𝐻  for all 𝑔 ∈ 𝐺.

Definition . Let 𝜑 : 𝐺 → 𝐻 be a group homomorphism.

The image of 𝜑 is the set

im(𝜑) ≔ {𝜑(𝑔) | 𝑔 ∈ 𝐺}

The kernel of 𝜑 is the set

ker(𝜑) ≔ {𝑔 ∈ 𝐺 | 𝜑(𝑔) = 𝑒𝐻}

Theorem . If 𝜑 : 𝐺 → 𝐻 is a group homomorphism, then 𝜑(𝑒𝐺) = 𝑒𝐻 . In particular, 𝑒𝐺 ∈
ker(𝜑) and 𝑒𝐻 ∈ im(𝜑).

proof. Consider

𝜑(𝑒𝐺) ⦁ 𝑒𝐻 = 𝜑(𝑒𝐺)
= 𝜑(𝑒𝐺 ⦁ 𝑒𝐺)
= 𝜑(𝑒𝐺) ⦁ 𝜑(𝑒𝐺)

⇒ 𝜑(𝑒𝐺) = 𝑒𝐻

□

Proposition . Let 𝜑 : 𝐺 → 𝐻 be a group homomorphism. Then im(𝜑) ≤ 𝐻 and ker(𝜑) ≤ 𝐺.

proof. We’ll prove ker(𝜑) ≤ 𝐺. Let 𝑎, 𝑏 ∈ ker(𝜑). WTS:

𝑒𝐺 ∈ ker(𝜑)

∀𝑎, 𝑏 ∈ ker(𝜑). 𝑎𝑏−1 ∈ ker(𝜑)

For first one, 𝜑(𝑒𝐺) = 𝑒𝐻 , so by definition, 𝑒𝐺 ∈ ker(𝜑). For second one, let 𝑎, 𝑏 ∈ ker(𝜑), then
𝜑(𝑎) = 𝜑(𝑏) = 𝑒𝐻 . Thus,

𝜑(𝑎𝑏−1) = 𝜑(𝑎) ⦁ 𝜑(𝑏−1)

= 𝑒𝐻 ⦁ 𝜑(𝑏)−1

= 𝑒𝐻 ⦁ 𝑒−1
𝐻

= 𝑒𝐻

Therefore, 𝑎𝑏−1 ∈ ker(𝜑) and so ker(𝜑) ≤ 𝐺. The proof for im(𝜑) ≤ 𝐻 is similar. □

Example . Define 𝜑 : ℤ → 𝑆4 given by 𝜑(𝑛) = (1 2 4)𝑛. Check if 𝜑 is a group homomorphism:

𝜑(𝑚 + 𝑛) = (1 2 4)𝑚+𝑛
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= (1 2 4)𝑚(1 2 4)𝑛

= 𝜑(𝑚)𝜑(𝑛)
im(𝜑) = ⟨(1 2 4)⟩
ker(𝜑) = 3ℤ = ⟨3⟩

Example . Fix 𝑛 ≥ 2, define 𝜑 : 𝑆𝑛 → ℤ2 given by

𝜑(𝜎) = {0 if 𝜎 is even
1 if 𝜎 is odd

For example, 𝜑((1 2)) = 1, 𝜑((1 2 3)(1 4)(3 4)) = 0.

im(𝜑) = ℤ2

ker(𝜑) = 𝐴𝑛

Proposition . A group homomorphism 𝜑 : 𝐺 → 𝐻 is injective iff

ker(𝜑) = {𝑒𝐺}

proof.
(⟹) Assume 𝜑 is injective. 𝑒𝐺 ∈ ker(𝜑) by theorem. If 𝑔 ≠ 𝑒𝐺, then 𝜑(𝑔) ≠ 𝜑(𝑒𝐺) = 𝑒𝐻 . Thus,
ker(𝜑) = {𝑒𝐺}.

(⟸) Assume ker(𝜑 = {𝑒𝐺}). WTS: 𝜑 injective. Let 𝜑(𝑎) = 𝜑(𝑏), then

𝜑(𝑎)−1𝜑(𝑎) = 𝜑(𝑎)−1𝜑(𝑏)

𝜑(𝑎)−1𝜑(𝑏) = 𝑒𝐻

𝜑(𝑎−1𝑏) = 𝑒𝐻

𝑎−1𝑏 = 𝑒𝐺

𝑎 = 𝑏

hence 𝜑 is injective. □

Example . 𝐺 = (ℝ2, +) and define

𝜑 : 𝐺 ⟶ 𝐺

[𝑎
𝑏] ⟼ [1

2
1
2][𝑎

𝑏]

is 𝜑 injective? Equivalently, is null([1
2

1
2]) = { ⃗0}?

No, [1
2

1
2][

1
−1] = ⃗0.

Definition . Let 𝑁 ≤ 𝐺. We say 𝑁  is normal if 𝑔𝑁 = 𝑁𝑔 for all 𝑔 ∈ 𝐺. In this case, we write
𝑁 ⊴ 𝐺.
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Example . If 𝐺 is abelian, then every subgroup 𝑁 ≤ 𝐺 is normal.

Example . 𝑁 ⊴ 𝐺 when |𝐺 : 𝑁| = 2. For example, ⟨(1 2 3)⟩ = 𝑁 ≤ 𝑆3, |𝑆3 : 𝑁| = 2, so 𝑁 ⊴ 𝑆3 =
𝐺. More generally, |𝑆𝑛 : 𝐴𝑛| = 𝑛!

𝑛!
2

= 2 so 𝐴𝑛 ⊴ 𝑆𝑛.

Example . 𝐻 = ⟨(1 2)⟩ is not a normal subgroup of 𝑆3.

(1 3)𝐻 = {(1 3), (1 3)(1 2)}
= {(1 3), (1 2 3)}

𝐻(1 3) = {(1 3), (1 2)(1 3)}
= {(1 3), (1 3 2)}

so (1 3)𝐻 ≠ 𝐻(1 3) and 𝐻 is not normal.

Proposition . If 𝜑 : 𝐺 ⟶ 𝐻 is a group homomorphism, then

ker(𝜑) ⊴ 𝐺

proof. Set 𝑁 ≔ ker(𝜑). Let 𝑔 ∈ 𝐺. WTS: 𝑔𝑁 = 𝑁𝑔.

Claim (1) . 𝑔𝑁 = {𝑥 ∈ 𝐺 | 𝜑(𝑥) = 𝜑(𝑔)} = 𝑒−1({𝑔})

proof. Let 𝑃 = {𝑥 ∈ 𝐺 | 𝜑(𝑥) = 𝜑(𝑔)}. Let 𝑥 ∈ 𝑃 , by definition 𝜑(𝑥) = 𝜑(𝑔), then

𝜑(𝑔)−1𝜑(𝑥) = 𝑒𝐻

𝜑(𝑔−1𝑥) = 𝑒𝐻

𝑔−1𝑥 ∈ 𝑁
𝑥 = (𝑔 ⦁ 𝑔−1)𝑥

= 𝑔 ⦁(𝑔−1𝑥) ∈ 𝑔𝑁
⟹ 𝑃 ⊆ 𝑔𝑁

Let 𝑥 ∈ 𝑔𝑁 , then

∃𝑦 ∈ 𝑁. 𝑥 = 𝑔𝑦
𝜑(𝑥) = 𝜑(𝑔𝑦) = 𝜑(𝑔)𝜑(𝑦) = 𝜑(𝑔)

then 𝑥 ∈ 𝑃  and so 𝑔𝑁 = 𝑃 . □

Claim (2) . 𝑁𝑔 = {𝑥 ∈ 𝐺 | 𝜑(𝑥) = 𝜑(𝑔)} = 𝑒−1({𝑔})

proof. Similar to claim (1), leave as exercise. □

By claim (1) and (2), 𝑔𝑁 = 𝑁𝑔 and so 𝑁 ⊴ 𝐺. □
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Proposition (Quotient Group) . Let 𝑁 ⊴ 𝐺, then define

𝐺
𝑁

≔ {𝑔𝑁 | 𝑔 ∈ 𝐺}

with multiplication given by

𝑎𝑁 ⦁ 𝑏𝑁 ≔ (𝑎𝑏)𝑁

then
1. 𝐺

𝑁  with multiplication is a group (callled the factor/quotient group).
2. If 𝜋 : 𝐺 ⟶ 𝐺

𝑁  is given by 𝜋(𝑔) = 𝑔𝑁 , then 𝜋 is a onto group homomorphism with ker(𝜋) =
𝑁 . In particular, every normal subgroup is the kernel of some group homomorphism.

proof. First, we’ll show the multiplication is well-defined. Let 𝑎𝑁 = 𝑎′𝑁  and 𝑏𝑁 = 𝑏′𝑁 , then

𝑎−1𝑎′ ∈ 𝑁 and 𝑏−1𝑏′ ∈ 𝑁

WTS: (𝑎𝑏)−1𝑎′𝑏′ ∈ 𝑁 . Observe that

(𝑎𝑏)−1𝑎′𝑏′ = 𝑏−1𝑎−1𝑎′𝑏′

but 𝑎−1𝑎 ∈ 𝑁  and 𝑁  normal, 𝑏−1𝑁 = 𝑁𝑏−1, then

𝑏−1(𝑎−1𝑎)𝑏′ = 𝑛𝑏−1𝑏′ for some 𝑛 ∈ 𝑁

∈ 𝑁 since 𝑏−1𝑏′ ∈ 𝑁

1. Now, check 𝐺
𝑁  is a group:

• Associative: let 𝑎𝑁, 𝑏𝑁, 𝑐𝑁 ∈ 𝐺
𝑁 ,

(𝑎𝑁 ⦁ 𝑏𝑁) ⦁ 𝑐𝑁 = 𝑎𝑏𝑁 ⦁ 𝑐𝑁
= (𝑎𝑏)𝑐𝑁
= 𝑎(𝑏𝑐)𝑁
= 𝑎𝑁 ⦁(𝑏𝑐)𝑁
= 𝑎𝑁 ⦁(𝑏𝑁 ⦁ 𝑐𝑁)

• Identity: 𝑁 = 𝑒𝑁  is the identity since 𝑒𝑁 ⦁ 𝑎𝑁 = 𝑎𝑁 ⦁ 𝑒𝑁 = 𝑎𝑁  for all 𝑎𝑁 ∈ 𝐺
𝑁 .

• Inverse: Let 𝑎𝑁 ∈ 𝐺
𝑁 , then 𝑎−1𝑁  is the inverse since 𝑎𝑁 ⦁ 𝑎−1𝑁 = 𝑎−1𝑁 ⦁ 𝑎𝑁 = 𝑁 .

2. Let 𝑎, 𝑏 ∈ 𝐺 and observe that

𝜋(𝑎𝑏) = (𝑎𝑏)𝑁
= 𝑎𝑁 ⦁ 𝑏𝑁
= 𝜋(𝑎)𝜋(𝑏)

so 𝜋 s a group homomorphism. Clearly, 𝜋 is surjective. Let 𝑎𝑁 ∈ ker(𝜋), 𝜋(𝑎) = 𝑒𝐺
𝑁

= 𝑁  iff
𝑎 ∈ 𝑁 . Hence ker(𝜋) = 𝑁 .

□
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Example . 𝐺 = ℤ, 𝑁 = ⟨6⟩ ⊴ 𝐺. Note that 𝐺
𝑁 = ℤ

⟨6⟩  is a group with 6 elements:

⟨6⟩ = 6ℤ
1 + 6𝑍

⋮
5 + 6𝑍

Here ℤ
6ℤ  is an abelian group with 6 elements. By FTFGAG,

ℤ
6ℤ

≅ ℤ6 ≅ ℤ2 × ℤ3

Example . 𝐺 = 𝑆3, 𝑁 = ⟨(1 2 3)⟩,

𝐺
𝑁

= 𝑆3
⟨(1 2 3)⟩

|𝐺
𝑁

| = |𝐺 : 𝑁| = |𝐺|
|𝑁|

= 6
3

= 2

by fact from class, 𝐺
𝑁  is isomorphic to ℤ2.

Example . If 𝑛 ≥ 2, show 𝐴𝑛 ⊴ 𝑆𝑛 and

𝑆𝑛
𝐴𝑛

≅ ℤ2

proof. First, |𝑆𝑛 : 𝐴𝑛| = |𝑆𝑛
|
|𝐴𝑛| = 2. By HW4, 𝜎𝐴𝑛 = 𝐴𝑛𝜎 for all 𝜎 ∈ 𝑆𝑛, so by def, 𝐴𝑛 ⊴

𝑆𝑛 and

| 𝑆𝑛
𝐴𝑛

| = |𝑆𝑛 : 𝐴𝑛| = 2

so 𝑆𝑛
𝐴𝑛

 is a group with 2 elements, thus isomorphic to ℤ2. □
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Chapter 3

Rings and Fields

3.1 Rings and Fields

Definition (Ring) . A ring 𝑅 is a set with two associative binary operations, addition (+) and
multiplication (⦁) such that:

1. (𝑅, +) is an abelian group
2. (Distributivity) For 𝑎, 𝑏, 𝑐 ∈ 𝑅, we have

𝑎 ⦁(𝑏 + 𝑐) = 𝑎 ⦁ 𝑏 + 𝑎 ⦁ 𝑐
(𝑏 + 𝑐) ⦁ 𝑎 = 𝑏 ⦁ 𝑎 + 𝑐 ⦁ 𝑎

when multiplication is commutative (∀𝑎, 𝑏 ∈ 𝑅. 𝑎 ⦁ 𝑏 = 𝑏 ⦁ 𝑎), we say 𝑅 is commutative.

Notation:
• 𝑎𝑏 will be written for 𝑎 ⦁ 𝑏
• The additive identity of 𝑅 is called “zero” and is denoted 0, so

∀𝑟 ∈ 𝑅. 0 + 𝑟 = 𝑟 + 0 = 𝑟

Example .

1. ℤ with usual + and ⦁ is a commutative ring.

2. Same thing for ℚ, ℝ or ℂ

3. 𝑀2(ℝ) = {[𝑎
𝑐

𝑏
𝑑] | 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ} is a ring with matrix addition and matrix multiplication, and

is not commutative.

4. More generally, 𝑀𝑛(ℝ) is a non-commutative ring when 𝑛 ≥ 2.

5. 𝜑(ℝ) = {𝑓 : ℝ → ℝ | 𝑓 continuous}
𝜑∞(ℝ) = {𝑓 : ℝ → ℝ | 𝑓 diff}

these are commutative rings where addition and multiplication are defined pointwise.

6. ℤ𝑚 is a commutative ring. The addition and multiplication are modular arithmetic:

𝑎 + 𝑏 = 𝑟 where 𝑎 + 𝑏 = 𝑞𝑚 + 𝑟 with 0 ≤ 𝑟 < 𝑚
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𝑎 ⦁ 𝑏 = 𝑟′ where 𝑎 ⦁ 𝑏 = 𝑞′𝑚 + 𝑟′ with 0 ≤ 𝑟′ < 𝑚

7. If 𝑅, 𝑆 are rings, then 𝑅 × 𝑆 is a ring.

8. If 𝑅 is a commutative ring, then

𝑅[𝑥] = {𝑎𝑛𝑥𝑛 + … + 𝑎1𝑥 + 𝑎0 | 𝑎𝑖 ∈ 𝑅}

is the polynomial with variable 𝑥 and coefficients in 𝑅, then 𝑅[𝑥] is a commutative ring.

Proposition . If 𝑅 is a ring, then every 𝑥 ∈ 𝑅 has a unique additive inverse −𝑥 and additive
Cancellation holds:

𝑥 + 𝑦 = 𝑥 + 𝑧 ∈ 𝑅 ⟶ 𝑦 = 𝑧 ∈ 𝑅

Proposition . If 𝑅 is a ring, then the following hold for any 𝑎, 𝑏 ∈ 𝑅:

1. 0𝑎 = 0
2. 𝑎 ⦁(−𝑏) = (−𝑎) ⦁ 𝑏
3. (−𝑎) ⦁(−𝑏) = 𝑎𝑏

proof.
1. On classwork 8
2. WTS:

𝑎𝑏 + 𝑎(−𝑏) = 0
𝑎𝑏 + (−𝑎)𝑏 = 0

first, observe that

𝑎𝑏 + 𝑎(−𝑏) = 𝑎(𝑏 + (−𝑏))
= 𝑎 ⦁ 0
= 0

next,

𝑎𝑏 + (−𝑎)𝑏 = (𝑎 + (−𝑎))𝑏
= 0 ⦁ 𝑏
= 0

3. (−𝑎) ⦁(−𝑏) = −(𝑎 ⦁(−𝑏))
= −(−(𝑎 ⦁ 𝑏))
= 𝑎 ⦁ 𝑏

□

Definition (Ring homomorphism) . A function 𝜑 : 𝑅 → 𝑆 is a ring homomorphism if 𝑅 and
𝑆 are rings and for all 𝑟1, 𝑟2 ∈ 𝑅,
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𝜑(𝑟1 + 𝑟2) = 𝜑(𝑟1) + 𝜑(𝑟2) 𝜑(𝑟1 ⦁ 𝑟2) = 𝜑(𝑟1) ⦁ 𝜑(𝑟2)

If 𝜑 is bijective, then 𝜑 is a ring isomorphism.

Example . define 𝜑 : ℤ → ℤ2 by

𝜑(𝑛) = {0 if 𝑛 is even
1 if 𝑛 is odd

Definition (Identity) . Let 𝑅 be a ring. We say 𝑅 has identity/unity element, denoted 1 ∈
𝑅 if

∀𝑎 ∈ 𝑅. 1 ⦁ 𝑎 = 𝑎 ⦁ 1 = 𝑎

that is, 1 is an identity element with respect to multiplication.

Note . 1 ∈ 𝑅, if exists, is unique.

Example .
• ℤ, ℚ, ℝ, ℂ have identity elements 1.
• ℤ𝑚, 1 is the identity element.
• 𝑀𝑛(ℝ) has identity element 𝐼𝑛.
• ℤ[𝑥] has an identity element 1.
• For 𝑚 ≥ 2, Consider 𝑅 = 𝑚 ⦁ ℤ, 𝑅 is a ring.

Definition (Unit) . Let 𝑅 be a ring with 1 ∈ 𝑅. We say 𝑎 ∈ 𝑅 is a unit if there exists 𝑏 ∈ 𝑅 such
that 𝑎𝑏 = 𝑏𝑎 = 1. In this case, 𝑏 is called the inverse of 𝑎 and is denoted 𝑎−1, and

𝑅𝑋 ≔ {𝑎 ∈ 𝑅 | 𝑎 is a unit}

Example .

• ℤ𝑋 = {1, −1}

• ℚ𝑋 = ℚ ∖ {0}, ℝ𝑋 = ℝ ∖ {0}, ℂ𝑋 = ℂ ∖ {0}

• 𝑀𝑛(ℝ)𝑋 = {[𝑎
𝑐

𝑏
𝑑] | 𝑎𝑑 − 𝑏𝑐 ≠ 0}

• ℝ = ℤ4[𝑥], 𝑓 = 2𝑥 + 1 ∈ 𝑅, 𝑓 ⦁ 𝑓 = 1, so 𝑓 ∈ 𝑅𝑋

Definition (Zero Divisor) . Let 𝑅 be a commutative ring. We say that 𝑎 ∈ 𝑅 is a zero-divisor
if there exists 0 ≠ 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 0

Example .

• The only zero-divisor in ℤ, ℚ, ℝ, ℂ is 0

• 𝑅 = ℤ4, 2 ⦁ 2 = 4 = 0, so 2 is a zero-divisor in ℤ4
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• 𝑅 = ℤ6, 2 ⦁ 3 = 6 = 0, 4 ⦁ 3 = 12 = 0, so 2, 3, and 4 are zero-divisors in ℤ6

• 𝑅 = 𝑀2(ℝ),

[1
0

0
0]

⏟
𝐴

[0
0

0
1]

⏟
𝐵

= [0
0

0
0]

then 𝐴, 𝐵 are zero-divisors in 𝑀2(ℝ)

• 𝑅 = ℤ4[𝑥], 𝑓 = 2𝑥 + 2, 𝑓 ⦁ 𝑓 = 0, 𝑓  is a zero-divisor in ℤ4[𝑥]

• 𝑅 = ℤ9, zero divisors are {0, 3, 6}

• 𝑅 = ℤ7, zero divisors are {0}

Definition (Domain and Field) . Let 𝑅 be commutative ring with 1 ∈ 𝑅 and 1 ≠ 0. We say that
𝑅 is a(n) (integral) domain if the only zero-divisor is 0. We say that 𝑅 is a field if

𝑅𝑋 = 𝑅 ∖ {0}

that is, every non-zero element has an inverse in a field.

Proposition . In a commutative ring, the units and zero-divisors are disjoint sets.

proof. On homework. □

Corollary . If 𝑅 is a field, then 𝑅 is a domain.

Example .
• Not every domain is a field. For example, ℤ is a domain but not a field.
• ℝ, ℚ, ℂ are all fields
• ℤ7 is a field
• ℤ6 is not a domain (nor a field!)
• ℝ[𝑥] is a domain but not a field: 𝑓 = 1 − 𝑥 does not have an inverse in ℝ[𝑥]

𝑓−1 = 1
1 − 𝑥

= ∑
∞

𝑛=0
𝑥𝑛 ∉ ℝ[𝑥]

and ℝ[𝑥]𝑋 = ℝ ∖ {0}

Proposition . If 𝑅 is a domain and 𝑎𝑏 = 𝑎𝑐 with 𝑎 ≠ 0, then 𝑏 = 𝑐.

proof. Consider

𝑎(𝑏 − 𝑐) = 𝑎𝑏 − 𝑎𝑐
= 𝑎𝑏 − 𝑎𝑏

29



Rings and Fields

= 0

since 𝑅 is a domain and 𝑎 ≠ 0, this forces 𝑏 − 𝑐 = 0, so 𝑏 = 𝑐. □

Proposition . if 𝑚 > 0 is composite, then ℤ𝑚 is not a domain. If 𝑝 is a prime, then ℤ𝑝 is a field
and hence a domain.

proof. Assume 𝑚 is composite, there exists 𝑎, 𝑏 ∈ ℤ with 𝑚 = 𝑎𝑏 and 1 < 𝑎 < 𝑚, 1 < 𝑏 < 𝑚.
Therefore, 𝑎, 𝑏 ∈ ℤ𝑚 and 𝑎, 𝑏 ≠ 0. But 𝑎𝑏 = 𝑚 = 0 in ℤ𝑚, they are zero-divisors and ℤ𝑚 is not
a domain.

Now assume 𝑝 is a prime and let 𝑎 ∈ ℤ𝑝 with 𝑎 ≠ 0. We know that gcd(𝑎, 𝑝) = 1. By the Euclidean
Algorithm there exists 𝑠, 𝑡 ∈ ℤ with

1 = gcd(𝑎, 𝑝) = 𝑎𝑠 + 𝑝𝑡

use the Division Algorithm to write

𝑠 = 𝑞𝑝 + 𝑟

with 0 < 𝑟 < 𝑝. Now 𝑟 ∈ ℤ𝑝 and want to show 𝑎𝑟 = 1 ∈ ℤ𝑝:

𝑎𝑟 = 𝑎𝑟 + 𝑎𝑞𝑝
= 𝑎(𝑟 + 𝑞𝑝)
= 𝑎𝑠
= 𝑎𝑠 + 𝑝𝑡
= 1

hence 𝑟 = 𝑎−1 in ℤ𝑝. Since 𝑎 is arbitrary, every non-zero element in ℤ𝑝 has an inverse and ℤ𝑝 is
a field. □

Definition (Characteristic) . Let 𝑅 be a commutative ring and 1 ≠ 0. The characteristic of 𝑅,
denoted char(𝑅) is the smallest positive interger 𝑛 such that

1 + 1 + … + 1⏟⏟⏟⏟⏟⏟⏟
𝑛

= 0

if no such 𝑛 exists, then char(𝑅) = 0.

Example .
• char(ℤ) = 0
• char(ℤ𝑚) = 𝑚
• char(ℤ2 × ℤ2) = 2

Proposition . If 𝑅 is a commutative ring with 1 ≠ 0 and char(𝑅) = 𝑛 > 0, then

∀𝑎 ∈ 𝑅. 𝑎 + 𝑎 + … + 𝑎⏟⏟⏟⏟⏟⏟⏟
𝑛

= 0
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proof. Let 𝑎 ∈ 𝑅 and consider

𝑎 + 𝑎 + … + 𝑎⏟⏟⏟⏟⏟⏟⏟
𝑛

= 𝑎 ⦁ 1 + … + 𝑎 ⦁ 1

= 𝑎 ⦁(1 + … + 1)
= 𝑎 ⦁ 0
= 0

□

3.2 Fermat’s and Euler’s Theorems

Definition . Fix 𝑚 > 0. Given 𝑎, 𝑏 ∈ ℤ, we write 𝑎 ≡ 𝑏 mod 𝑚 “𝑎 is equiv. to 𝑏 mod 𝑚” if

𝑎 + 𝑚ℤ = 𝑏 + 𝑚ℤ

equivalently,

𝑎 ≡ 𝑏 mod 𝑚 ⟺ 𝑎 − 𝑏 ∈ 𝑚ℤ

Example .

50 ≡ 2 mod 4
≡ −2 mod 4
≡ −6 mod 4

Example . The equation 2𝑥 ≡ 1 mod 7 has integer solutions of the form

∀𝑛 ∈ ℤ. 𝑥 = 4 + 7𝑛

Example . 2𝑥 ≡ 0 mod 6,

𝑥 = 3 + 6𝑛 where 𝑛 ∈ ℤ
𝑥 = 6𝑛 where 𝑛 ∈ ℤ

Remark . If 𝑅 is a commutative ring with 1 ≠ 0, then 𝑅𝑋 is anabelian group with multiplication
and identify element 1. In particular, if 𝔽 is a field, then

𝔽𝑋 = 𝔽 ∖ {0} = {𝑎 ∈ 𝔽 : 𝑎 ≠ 0}

is an abelian group.

Theorem (Fermat's Little Theorem) . If 𝑝 is a prime number and 𝑎 ∈ ℤ with 𝑝 ∤ 𝑎 then

𝑎𝑝−1 ≡ 1 mod 𝑝

proof. Since 𝑝 is prime, ℤ
𝑝ℤ  is a field. In particular, ( ℤ

𝑝ℤ)
𝑋

 is an abelian group with 𝑝 − 1
elements. By Lagrange’s Theorem,

(𝑎 + 𝑝ℤ)𝑝−1 = 1 + 𝑝ℤ
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therefore

𝑎𝑝−1 ≡ 1 mod 𝑝

□

Corollary . If 𝑝 is prime and 𝑎 ∈ ℤ then 𝑎𝑝 ≡ 𝑎 mod 𝑝

proof.
• Case 1: 𝑎 ≡ 0 mod 𝑝, then 𝑎𝑝 ≡ 0𝑝 ≡ 0 ≡ 𝑎 mod 𝑝
• Case 2: 𝑎 ≢ 0 mod 𝑝. In this case, FLT says 𝑎𝑝−1 ≡ 1 mod 𝑝. Multiplying both sides by 𝑎 yields:

𝑎𝑝 ≡ 𝑎 mod 𝑝

□

Example . Find 𝑥 ∈ ℤ13 such that 𝑥 ≡ 8103 mod 13

Answer .

8103 = 89687

≡ 87 mod 13
= 86 ⦁ 8
≡ (−5)6 ⦁ 8 mod 13

= ((−5)2)3 ⦁ 8

≡ (−1)3 ⦁ 8 mod 13
= −8

so 𝑥 = 5.

Example . Show 211,213 − 1 is not divisible by 11.

proof.

211,213 = 211,210 ⦁ 23

≡ 1 ⦁ 8 mod 11
= 8

so 211,213 − 1 is not divisible by 11. □

Example . Prove that 𝑛33 − 𝑛 is divisible by 15 for every 𝑛 ∈ ℤ.

proof. Let’s show 𝑛33 ≡ 𝑛 mod 3 and 𝑛33 ≡ 𝑛 mod 5.

For 3:
• Case 1: 𝑛 ≡ 0 mod 3, 𝑛33 ≡ 0 ≡ 𝑛 mod 3
• Case 2: 𝑛 ≢ 0 mod 3,

𝑛33 = 𝑛32 ⦁ 𝑛
≡ 1 ⦁ 𝑛 mod 3
= 𝑛

32



Rings and Fields

For 5:
• Case 1: 𝑛 ≡ 0 mod 5, 𝑛33 ≡ 0 ≡ 𝑛 mod 5
• Case 2: 𝑛 ≢ 0 mod 5,

𝑛33 = 𝑛32 ⦁ 𝑛

= (𝑛4)8 ⦁ 𝑛
≡ 1 ⦁ 𝑛 mod 5
= 𝑛

Therefore, 𝑛33 − 𝑛 is divisible by 15. □

Example . Solve for 𝑥 in ℤ
31ℤ , or ℤ31:

𝑥62 − 16 = 0 in ℤ31

use the solution to find all integer solutions to

𝑥62 − 16 ≡ 0 mod 31

Answer .

𝑥32 − 16 ≡ 𝑥2 − 16 mod 31
≡ (𝑥 − 4)(𝑥 + 4) mod 31
≡ 0 mod 31

since ℤ
31ℤ  is a field,

𝑥 − 4 ≡ 0 mod 31
𝑥 + 4 ≡ 0 mod 31

Recall . Fix 𝑚 > 0, then

𝜑(𝑚) = number of positive integers 𝑛 < 𝑚 with gcd(𝑚, 𝑛) = 1
= |{𝑛 ∈ 𝑍𝑚 : gcd(𝑛, 𝑚 = 1)}|

Example . 𝜑(8) = 4

Example . 𝑝 prime, 𝜑(𝑝) = 𝑝 − 1

Proposition . Fox 𝑚 > 0 and 𝑎 ∈ ℤ𝑚, then
• If gcd(𝑎, 𝑚) ≠ 1, then 𝑎 is a zero-divisor in ℤ𝑚
• If gcd(𝑎, 𝑚) = 1, then 𝑎 is a unit in ℤ𝑚

Corollary .

( ℤ
𝑚ℤ

)
𝑋

is an abelian group with 𝜑(𝑚) elements, the elements are those 𝑎 + 𝑚ℤ with gcd(𝑎, 𝑚) = 1.
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Theorem (Euler's Theorem) . If 𝑚 > 0 and 𝑎 ∈ ℤ with gcd(𝑎, 𝑚) = 1, then

𝑎𝜑(𝑚) ≡ 1 mod 𝑚

Remark . If 𝑚 is prime in Euler’s Theorem, then on recovers FLT.

Example . 564 ≡ 1 mod 8 by Euler’s Theorem since 𝜑(8) = 4.

Example . find all integers solutions to

5𝑥31 ≡ 1 mod 18

here 𝑚 = 18, 𝜑(18) = 6. Any solution 𝑥 has gcd(𝑥, 18) = 1. So by Euler’s Theorem,

𝑥𝜑(18) = 𝑥6 ≡ 1 mod 18

so

5𝑥31 ≡ 5𝑥 mod 18

to find 𝑥, lets use the Division Algorithm

18 = 3 ⦁ 5 + 3
5 = 1 ⦁ 3 + 2
3 = 1 ⦁ 2 + 1
2 = 2 ⦁ 1 + 0

now run in reverse

1 = 3 − 1 ⦁ 2
= 3 − 1 ⦁(5 − 3)
= 2 ⦁ 3 − 1 ⦁ 5
= 2 ⦁(18 − 3 ⦁ 5) − 1 ⦁ 5
= 2 ⦁ 18 − 7 ⦁ 5

1 ≡ (−7) ⦁ 5 mod 18

all integer solutions are of the form

𝑥 = −7 + 18𝑛 where 𝑛 ∈ ℤ

Example . Is 7 a perfect square in the following rings?
1. ℤ23
2. ℤ31

Answer .
1. Suppose it is. That is, there exists 𝑥 ∈ ℤ such that 𝑥2 ≡ 7 mod 23. By FLT, 𝑥22 ≡ 1 mod 23, so we

would have

1 ≡ 𝑥22 mod 23

≡ (𝑥2)11

≡ 711
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≡ 7 ⦁ (49)5

≡ 7 ⦁ 35

≡ 7 ⦁ 27 ⦁ 9
≡ 7 ⦁ 4 ⦁ 9
≡ 5 ⦁ 9
≡ −1
≡ 22 mod 23

Contradiction. So 7 is not a perfect square in ℤ23.
2. Yes it is a perfect square in ℤ31.

𝑥2 ≡ 7 mod 31
≡ 7 + 3 ⦁ 31 mod 31
≡ 100 mod 31

𝑥 ≡ ±10 mod 31

so 𝑥 = 10 or 𝑥 = 21.

Example . Find 𝑥 ∈ ℤ15 such that 290 = 𝑥 mod 15.

Answer . By Eular’s Theorem, 28 ≡ 1 mod 15. So

290 ≡ 288 ⦁ 22 mod 15
≡ 1 ⦁ 4 mod 15
≡ 4 mod 15

so 𝑥 = 4.

3.3 The Field of Fractions

Definition (The field of fractions) . Let 𝑅 be a domain. The field of fractions is

𝑄 ≔ 𝑅 × (𝑅 ∖ {0})
∼

= {(𝑎, 𝑏) ∈ 𝑅 × 𝑅 | 𝑏 ≠ 0}
∼

where

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⟺ 𝑎𝑑 = 𝑏𝑐

we’ll write 𝑎
𝑏  as the equivalence class of (𝑎, 𝑏) ∈ 𝑄.

Example . ℤ is a domain and its field of fractions is ℚ.

Example . ℂ is a domain and its field of fractions is ℂ.

Example . More generally, if 𝔽 is a field, then it is its own field of fraction.
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Definition (Degree) . Let 𝑅 be a ring with 1 ≠ 0. The degree of 𝑓 ∈ 𝑅[𝑥] with 𝑓 ≠ 0 is deg(𝑓) =
𝑛 where

𝑓 = 𝑎𝑛𝑥𝑛 + … + 𝑎1𝑥 + 𝑎0

with 𝑎𝑛 ≠ 0

Example .
• 𝑓 = 𝑥2 + 1, deg(𝑓) = 2
• 𝑓 = 5𝑥4 + 2𝑥3, deg(𝑓) = 4

Theorem . 𝑅 is a domain iff 𝑅[𝑥] is a domain

proof.
• (⟹) Assume 𝑅 is a domain. Let 𝑓, 𝑔 ∈ 𝑅[𝑥] with 𝑓 ≠ 0 and 𝑔 ≠ 0. WTS: 𝑓 ⦁ 𝑔 ≠ 0, or

deg(𝑓 ⦁ 𝑔) = deg(𝑓) + deg(𝑔)

Remark . Does not hold when 𝑅 is not a domain. E.g., ℤ4[𝑥],

𝑓 = 2𝑥 deg(𝑓) = 1

𝑔 = 2𝑥3 + 𝑥 deg(𝑔) = 3

𝑓 ⦁ 𝑔 = 2𝑥2 deg(𝑓 ⦁ 𝑔) = 2

Write

𝑓 = 𝑎𝑛𝑥𝑛 + … + 𝑎1𝑥 + 𝑎0

with 𝑎𝑛 ≠ 0, then deg(𝑓) = 𝑛, and

𝑔 = 𝑏𝑚𝑥𝑚 + … + 𝑏1𝑥 + 𝑏0

with 𝑏𝑚 ≠ 0, then deg(𝑔) = 𝑚. Then

𝑓 ⦁ 𝑔 = 𝑎𝑛𝑏𝑚𝑥𝑛+𝑚 + … + 𝑎1𝑏1𝑥 + 𝑎0𝑏0

since 𝑎𝑛 ≠ 0, 𝑏𝑛 ≠ 0 and 𝑅 is domain, 𝑎𝑛𝑏𝑚 ≠ 0, so

deg(𝑓 ⦁ 𝑔) = 𝑛 + 𝑚 = deg(𝑓) + deg(𝑔)

in particular, 𝑅[𝑥] is a domain.
• (⟸) 𝑅 ⊆ 𝑅[𝑥] and 𝑅[𝑥] is a domain so it follows that 𝑅 must also be a domain.

□

Example . ℤ[𝑥] is a domain. Its field of fractions is

{𝑓
ℎ

| 𝑓, 𝑔 ∈ ℤ[𝑥], 𝑔 ≠ 0} = {(𝑓, 𝑔) ∈ ℤ[𝑥] × ℤ[𝑥] | 𝑔 ≠ 0}
∼
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that is, the field of fractions of ℤ[𝑥] is the set of rational functions with integer coefficients:

1
1 − 𝑥2 , 7𝑥4 + 2𝑥5

10𝑥7 + 2𝑥 + 1
∈ field of fractions

Theorem . If 𝑅 is a domain with field of fractions 𝑄, then 𝑄 is a field where

𝑎
𝑐

+ 𝑐
𝑑

≔ 𝑎𝑑 + 𝑏𝑐
𝑏𝑑

𝑎
𝑐

⦁ 𝑏
𝑑

≔ 𝑎𝑏
𝑐𝑑

proof. First check + is well defined. Let 𝑎
𝑏 = 𝑎′

𝑏′ , WTS:

𝑎
𝑏

+ 𝑐
𝑑

= 𝑎′

𝑏′ + 𝑐
𝑑

that is, WTS:

𝑎𝑑 + 𝑏𝑐
𝑏𝑑

= 𝑎′𝑑 + 𝑏′𝑐
𝑏′𝑑

⇔⇔⇔⇔⇔⇔⇔⇔
definition

(𝑎𝑑 + 𝑏𝑐)𝑏′𝑑 = 𝑏𝑑(𝑎′𝑑 + 𝑏′𝑐)

Since

𝑎
𝑏

= 𝑎′

𝑏′ ⟹ 𝑎𝑏′ = 𝑏𝑎′

then

(𝑎𝑑 + 𝑏𝑐)𝑏′𝑑 = (𝑎𝑑)(𝑏′𝑑) + (𝑏𝑐)(𝑏′𝑑)

= 𝑎𝑏′𝑑2 + 𝑏𝑑𝑐𝑏′ since 𝑅 commutative
= 𝑏𝑎′𝑑2 + 𝑏𝑑𝑐𝑏′

= (𝑏𝑑)(𝑎′𝑑) + (𝑏𝑑)(𝑏′𝑐) since 𝑅 commutative
= (𝑏𝑑)(𝑎′𝑑 + 𝑏′𝑐) by distribution

therefore + is well-defined.

Exercise . Show multiplication is well-defined.

Since 𝑅 is a commutative ring, + and ⦁ are commutative binary operations on 𝑄,

Claim . 0
1  is the additive identity.

𝑎
𝑏

+ 0
1

= 𝑎 ⦁ 1 + 𝑏 ⦁ 0
𝑏 ⦁ 1

= 𝑎
𝑏

Claim . 1
1  is the multiplicative identity.

𝑎
𝑏

⦁ 1
1

= 𝑎 ⦁ 1
𝑏 ⦁ 1

= 𝑎
𝑏
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Claim .

−(𝑎
𝑏
) = −𝑎

𝑏
∈ 𝑄

𝑎
𝑏

+ −𝑎
𝑏

= 𝑎𝑏 − 𝑏𝑎
𝑏2 = 0

𝑏2 = 0
1

Exercise . Show + and ⦁ are associative.

Claim . If 𝑎
𝑏 ≠ 0, then

(𝑎
𝑏
)

−1
= 𝑏

𝑎

Finally, we show Distributivity holds:

𝑎
𝑏

⦁(𝑐
𝑑

+ 𝑒
𝑓

) = 𝑎
𝑏

⦁(𝑐𝑓 + 𝑑𝑒
𝑑𝑓

)

= 𝑎(𝑐𝑓) + 𝑎(𝑑𝑒)
𝑏(𝑑𝑓)

= 𝑎𝑏(𝑐𝑓) + 𝑎𝑏(𝑑𝑒)
𝑏2(𝑑𝑓)

= 𝑎𝑐(𝑏𝑓) + (𝑏𝑑)𝑎𝑒
𝑏2(𝑑𝑓)

= 𝑎𝑐
𝑏𝑑

+ 𝑎𝑒
𝑏𝑓

□

Proposition . If 𝑅 is a domain with field of fractions 𝑄, then the function

𝜄 : 𝑅 ⟶ 𝑄

𝑎 ⟼ 𝑎
1

is a injective ring homomorphism.

proof. Let 𝑎, 𝑏 ∈ 𝑅
1.

𝜄(𝑎 + 𝑏) = 𝑎 + 𝑏
1

= 𝑎
1

+ 𝑏
1

= 𝜄(𝑎) + 𝜄(𝑏)

2. 𝜄(𝑎 ⦁ 𝑏) = 𝜄(𝑎) ⦁ 𝜄(𝑏) Omitted
3. 𝜄 is injective: Assume 𝜄(𝑎) = 𝜄(𝑏), then definition of 𝜄 gives

𝑎
1

= 𝑏
1

⟺ 𝑎 ⦁ 1 = 𝑏 ⦁ 1 ⟺ 𝑎 = 𝑏

□
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Remark . Previous propositions says we can view 𝑅 ⊆ 𝑄. In fact, 𝑄 is the smallest field containing
𝑅.

Theorem . If 𝑅 is a domain and 𝑄 is its field of fractions with 𝜄 : 𝑅 ⟶ 𝑄 from the previous
proposition, then for any injective ring homomorphism 𝜑 : 𝑅 ⟶ 𝐹  with 𝐹  a field, there exists
a unique injective field homomorphism 𝜑̃ : 𝑄 ⟶ 𝐹

𝜑

𝜋
∃!𝜑̃

𝑅 𝐹

𝑄
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