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Chapter 1

Sets and relations

1.1 Review on Sets

B =1{2,4,6,8}

xeA

x ¢ A

27 = {...,—6,—4,—2,0,2,4,6,..},2 € 27,3 ¢ 27
Q={%]a€ZbeZ\{0}},44€cQn¢Q
r={[2 ] labecdern(l))+0}
A0

Q is a proper subset of R.
ANB={z|z€ ANz € B}

ANB=09

ANB ={a,3}

@ is disjoint from A.

Ax B={(a,b)|a€e ANb € B}
{(a,a),(a,0),(a,1), (b, a), (b,0), (b,1), (¢, a), (¢,0), (¢, 1)}

Definition. Let A, B be sets, a function f : A — B is a map that assigns each a € A to f(a) €
B.

A is the domain and B is the codomain of f.
Definition. f(A) = {f(a) | a € A} is the range of f.

Definition. f is one-to-one if f(a,) = f(ay) = a; = a,
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Definition. f is a bijection if it is both one-to-one and onto; in this case, f has an inverse
function f~! : B — A where

fa) =b<a=f1()

1.2 Equivalence relation

Theorem (Equivalence relation). An Equivalence relation ~ on a set A is

1. (Reflexive) a ~ a
2. (Symmetric) a ~b=0b~a
3. (Transitive) a ~b,b ~c=a ~c

Remark. Equality “=" is the strongest equivalence relation

Example (Eq. rel. 1). S = {A in the plane}, ~ can be defined as
A ~ Ay <= A, A, are similar
Example (Eq. rel. 2). Define = on Z by

a=b<= a—>bis even
< aq—b=2n for somen € Z

Definition (Equivalence class). ~ on A and a € A, the equivalence class of a is
a:={beA|a~b}

Remark. Equivalence classes partition the set.
Example (~ on Z). 5 € [1] = {odd integers} = [5] = [-17] = ...

1.3 Binary Operation

Definition (Binary Operation). Let S be a set. A binary operation on S is a function * : S X
S—S.

For each (a,b) € S x S, we write “a times b”
a*b:=x%((a,b))
Remark. A binary operation on S is a way to multiply every pair of elements on S and get an

element of S.

Example. “+”, addition, on Z is a binary operation. Since the sun of intergers is an interger,
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24+(-3)=—-1€Z
Substraction is also a binary operation on Z, since the difference of integers is an interger.
Example. M, (R) = {[ 3] | a,be,d e R}
Matrix multiplication is a binary operation on M, (R).
Example. let C(R) = {f : R — R | f continuous}
Function composition, o is a binary operation on C'(R). i.e. f,g € C(R), then f o g is continuous.

Definition. Let x be a binary operation on a set S. It is
1. commutative if

Va,be S.axb=bxa
2. associative if

(axb)xc=ax*(bxc)

Example. “+”, addition, on Z is associative and commutative.

Example. Matrix multiplication is associative and not commutative.

Definition. Let x be a binary on a set S. A subset H C S is closed under * if

Vh,ge H.hxge H

Example. R with - is a binary operation. Z C R closed under -

Example. Q" with + is a binary operation. Z* C Q" is not closed under +

1.4 Isomorphic Binary Structure

Definition (Binary Structure). A binary structure (S, ) is a set .S with a binary operation .
Example. (R, +), (M,,+)

Definition (Identity Element). An element e € S is an identity element for x if

VaeS. exa=axe=a

Example.

* (R, +) has identity element 0

* (M,,) has identity element [(1) (1]]
* (Z,-) has identity element 1
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Theorem. If (S, x) has an identity element, then it is unique.

proof. Assume e, e’ € S are identity elements for %, to show that e = e¢’. Then

a

Definition (Isomorphic Binary Structure). Let (S, *) and (T, +) be binary structures. We say
they are isomorphic, denoted by S = T, if there is a bijection f : S — T such that

Va,be S. f(axb) = f(a)- f(b)

In this case, f is called an isomorphism.
Remark. S = T means that S and T are the same in terms of their binary operation up to relabeling.

Theorem . If f: (S,x) — (T, %) is an isomorphism of binary structures, then the inverse
bijection f~! : T'— S is an isomorphism. That is

Vo,y € T. f1(a-b) = f~1(a)x f1(b)

proof. Exercise (see note on blackboard) O



Chapter 2

Groups and subgroups

2.1 Groups

Definition (Group). A group (G, +) is a set G with a binary operation « on G such that
1) . is associative

2) has an identity elemente € Gs.t. Va € G.ae=e-a=a

3) hasinverses Vg€ G.g-g ' =g l.g=e

We say a group (G, +) is abelian if - is commutative.

Example. (Z, +) is an abelian group
* + is associative and commutative
* 0 is the identity element

* The inverse of a € Z is —a

(Q,+) and (R, +) are also abelian groups

Example. (R*,.) is abelian group.
* . is associative and commutative
* 1 is the identity element

* The inverse of a € R is 1

Example. Let
S = {[Z Z] € My(R) | adbc#O}

Then (S, -) is a group is an example of a non-abelian group.

* |, | is the identity element

* The inverse of [‘cl Z] is —1— {_dc _ab]

Example. S = {4 € M, (R) | det(A) # 0} is a group under matrix multiplication.

Example . S; = {bijection from {1,2,3} to itself} with composition as the binary operation is a
group. There are 3! elements in S;.
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Proposition.

The identity element of a group is unique.
Inverses are unique.

Cancellation law: a+b=a-c=b=c
gt =g

(g-h)~t =h7t-g7"

s e [N

2.2 Subgroups

Definition (Order). The order of a group G is

G| = number of elements in G if G finite
oo if G infinite

Definition (subgroup). Let (G,+) be a group. A subgroup of G is a subset H C G such that
the restriction of - on H makes H a group. We write H < G.

Remark. H being a subgroup of (G, -) means that
1. . is a binary operation on H

2. eCH

3.Vhe H.h'1CH

Example. {—1,1} is a subgroup of (R\ {0},+). (-1)"' =—-1€ {-1,1}.

Example.

Definition (Proper subgroup). Let H < G, we say H is a proper subgroup of G if H + G.
We write H < G. If H = {e}, then H is called the trivial subgroup. Otherwise H is called a
nontrivial subgroup.
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Theorem (Subgroup test). Let (G, -) be group, and H C G, then H is a subgroup of G iff H #+
@ and Va,b€ H.a-b"' € H.

Example. Let H := { [(1) ';] | a € ]R}. Then H is a subgroup of M,(R).

proof. H is not empty. Now take A = [(1) ‘11] ,B= [(1) 21’] € H. Then

Definition. Let (G, ) be a group and g € G. For n € Z define

n times
ge..*g ifn>0
n e
9" =9 ifn=20
(g=1)+.e(g~1) if n < O
n times

\

Definition. Let (G, -) be a group and g € G. The cyclic subgroup generated by g is

(9) ={g9" I neZ}

Example. G = (Z,+),

(—1) =7
(2) = 27
(3) = 3Z

Example. G = S,

(1 2)) ={id, (1 2)}
((1 23))={id, (1 2 3),(1 3 2)}

Proposition. For a group G, (g) < G for all g € G.

proof. Since g € (g), G # @.Leta,b € (g), then by definition, a = g™ and b = g" for some
m,n € Z.
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@b = gm(g")
greg"
=g" " €(9)
Thus ab™! € (g) and so by theorem we have {g) < G. O

Definition. A group G is cyclic if there exists g € G such that G = (g). In this case, g is called
a generator of G.

Proposition. Every cyclic group is abelian.

proof. Let G be cyclic, then there is g € G such that G = (g) and (g) is abelian. Thus G is abelian.
O

Theorem. Every subgroup of a cyclic group is cyclic.

proof. LetG cyclicand H < G.If H = {e}, then H is cyclic. Otherwise, let g € G be a generator
of G and m be the smallest positive integer such that ¢™ € H. Show that H C (¢™). Let h € H,
then h = g™ for some n € Z. Using Division Algorithm on Z, there exists ¢q,r € Z with 0 <r <
m such that

n=qgm-+r
Also, note that (¢™) 7 € H since (g™) ¢ € (¢™) C H. Finally, we obtain that
(g™)*heH
Now notice
(g™) Th=(g™) "g"
— g—mq . gn
=g ™. gqm-i-r
— g—mq+qm+r
=g"€(g™)
By the choice of m and since 0 < r < m with ¢g" € H, we conclude that » = 0. Therefore, 0 =
n = gm and hence

h=g"=g"™=(g")" € (¢™)

thus, H C (¢™) and so H = (g"). Therefore, by definition, H is cyclic. O

Corollary. Every subgroup of (Z +) has the form nZ = (n) for some n € Z.
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Example. Fix m € Z with m > 0. Let
Z,, ={0,1,...,m—1}
and defines + on Z,, by a + b = r where r < m = a + b (mod m).

Remark. + is an associative, commutative binary operation on Z,,. Also 0 is the identity element
and a! = m — a is the inverse of a.

Definition. Let (G,-), (H, ) be groups, we say G is isomorphic to H if they are isomorphic
as binary structures. We write G = H.

Remark. G = H means there is a bijection f : G — H, called a group isomorphism, such that

f(g1+92) = f(g1) * f(g2)
for all g, g, € G.
Example. let G = (Z,,+), H = ({—1,1},-), claim G =~ H.
proof. Define f:Z, — {—1,1} be f(0) =1 and f(1) = —1. Then

f(0+0)=f(0)=1=1-1=f(0)- f(0)
fA+0)=f(1)=—-1=-1-1= f(1)-f(0)
fA+1) =f(1)=1=-1-—1=f(0)- f(0))

thus f is an isomorphism. O

Example. Zg % S; because Zg is abelian and cyclic and S5 is not.
Example. Let G =Z,, H = ({+i,+1},:), G = H by

f:G— H
0 —1
1 +—1
2 — —1
3 — —1

Definition (Order of group element). Let G be a group and g € G, then order of g is the
smallest positive integer such that g” = e. If there is no m then |g| := oc.

Example. G =Z,, then |2| =1, |3| =4, |1| =4, |0| = 1.
Example. G = S5, |(123)| =3

Lemma. Let G be a group and g € G where |g| = m < co. Then

(9) ={e,9,9% ...g™ '}

10
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Theorem. Let G = (g) cyclic, then

G%{Z if |G| = o0

Z, if|Gl=n

n

and more over, when G = Z,, then |g| = m.

proof. When |G| = oo, want to show G = Z. Define f : Z — G by f(n) = ¢”. Then
fln+m)=g""" =g"-g™ = f(n)+ f(m)

It’s clear that f is surjective. Still need to show it’s injective. Suppose it’s not, then there’re
g*, g™ € G where k # n and f(k) = f(n). But

fld)=fg")=d"=g"=g""=e¢
which means |g| < k —n < oo, a contradiction. Thus f is injective, hence an isomorphism. O
Fact (Euclidean Algorithm). m,n € Z, their ged is denoted by ged(m, n) is the largest integer
that divides both m and n. There exists a, b € Z such that
ged(m,n) = am + bn

we say m and n are relatively prime if gcd(m,n) = 1.

Example. ged(5,7) = 1, 5, 7 relatively prime.
1=35+(-2)-7

Theorem. Let G = (g) with G = Z,,, then

9" = ——
9= ged(m, n)

In particular, g™ is a generator for G iff m,n are relatively prime.

Example. Zg = {0,1,2,3,4,5,6, 7}, the theorem says 1, 3, 5, 7 are generators! Also, it says

8

A= —
2 ged(8,2)

Definition. Let m € Z with m > 0. Define

em)={ne€Z|0<n<mAged(m,n) =1}

Corollary. If G = Z,,, then G has ¢(m) generators.

11
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Fact. If k,m > 0 € Z and gcd(k, m) = 1, then
p(km) = p(k)p(m)

Example. The Klein 4-group is

=062 )

with matrix multiplication. It is a subgroup of M, (R).

Remark. V, is the smallest group that is not cyclic.

2.3 Generating sets

Proposition . Let G be a group and consider a collection of subgroups {Hi}ie ; of G. Then
ﬂie] H, is a subgroup of G. In particulay, if H, K < G then HN K < G.

proof. Since each H, is a subgroup of G, we have e € H, for all i € I. Hence by definition, e €
N, Hi> therefore (. H; # @. Let a,b € [, _, H;. By definition, a,b € H, for all i € I. Also,
since H, is a subgroup and b € H, for all i € I, we have that b=! € H, foralli € I. Thus ab™! €
H,forallieIandsoab™ € mie[ H,. Therefore, by the subgroup test, ﬂie[ H, <G. O

Definition. The subgroup generated by S is

()= (] H

S<H<G

That is, (S) is the intersection over all subgroups of G containing S when S = {a,, ...,a, }, we
write (aq, ..., a,,) for (S).

Remark. (S) is the smallest subgroup of G containing S.
Fact. S< H = (S)<H
Proposition. Let n be a positive number
Every permutation is a product of transpositions. That is,

{(Gj):1<i<j<n}

is a generating set of S,,.

12
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2.4 Orbits, Cycles and Alternating Groups

Proposition. No permutation is a product of an even number of transpositions and a product
of an odd number of transpositions.

proof. Leto € S, and write
0 =Ty Ty...T,, With each 7; a transposition

Think of o or each 7; as permuting the standard basis e, e, ..., e,, for R”, and write A_ or A_
as the corresponding matrix. Then

and

Since det(A,) is a well-defined function on S,,, it follows that any choice is either even or odd.
a

Definition. Let o € S,, and write o = 7;7,...7,, Where each 7; is a transposition. If m is even,
then ¢ is called an even permutation and if m is odd, then o is called an odd permutation.

Example.o = (1 2 3)(4 5) = (1 2)(2 3)(4 5), o is odd

Example. id is a product of O transpositions, so it is even.

Example. Transpositions are odd.

Example.o = (1 23 4 5)= (1 2)(2 3)(3 4)(4 5)
Definition (Alternating Groups). The alternating group A4,, is the set of all even permutations
inS,

A, ={c €S, | oiseven}

Example. A; = {id, (1 2 3),(1 3 2)}
Example. 4, = {id, (1 2 3),(1 3 2),(1 3 4),...}

Proposition. A, is always a subgroup of S,, with order ”7'

13
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2.5 Cosets and Lagrange’s Theorem

Definition (Coset). Fix a group G and H < G. For g € G, define the left coset H containing g
to be

g-H:={gh|heH}
the right coset H containing g to be

H-g:={hg|heH}

Example. G = (Z, +) and H = 4Z = (4). Find the left coset of H.

0+H=1{.,—8,-4,0,4,8,..}
1+H=1{.,-7,-3,1,5,9,..}
2+ H={..,—6-2286,10,..}
3+H={.,—-5-1,3711,..}
4+H=0+H
Example. G = S;and H = ((1 2 3)),

H=idH = {id, (1 2 3),(1 3 2)}
(13)H=(12)H={(12),(23),(13)}

Lemma.

1. aH #@forallae G

2. aH =bH < a'be H

3. If aH NbH + @, then aH = bH
4. U, qoll =G

proof.
1. e € H since H < G and hence

a=a-e€aH

thus aH +# @ for all a € G.
2. (=) Assume aH = bH. Notice that b = b-e € bH and since bH = aH, we have b € aH. By
definition of H, there exists h € H such that

b=ah
Multiplying both sides a~! yields:
a b =a"1(ah)

14
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Thus,a 'b=he H

(«<=) Omitted
3. Assume aH NbH + @, there exists x € aH N bH. By definition there exists h,, h, € H such
that

x = ah; = bhy
Multiplying both sides by a~! gives:
hy = a tah; = a'bh,
Multiplying h5' on the right:
hihyt =a™1b
Since a~'b € H, then by 2

aH =bH
4. We already showed in 1 thata € aH,so|J _,aH =G

Remark. The lemma also holds for right cosets.
Example. G = (Z,+) and H = (5),
52=H ={..,—5,0,5,...
14+5Z=1+H=1{..,—4,1,6,...
245Z=2+H=1{.,-327,..
3+5Z=3+H={...,—2,3,8, ...
A+5Z=4+H={...,—1,4,9, ...

e e o

are the distinct left cosets and partition Z.

Definition (Index). The index of H < @ is the number of distinct left cosets of H in G. We write

|G : H|

Example. G =Zand H=(4), |G: H|=|Z: (4)| =4

15
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Theorem (Lagrange's Theorem). Let G be a finite group and H < G, then
G| = [H| |G : H

in particular, |H| divides |G]|.
proof. Letn =|G: H|,and a,H, ..., a, H be the distinct left cosets of H. Note by the lemma
G = Uainith a;HNa;H =@ fori+#j
=1

then,

U aiH‘ => la;H]|
=1

G| =

i=1

Claim. |a,H| = |H| for all ¢

proof. Define f: H — a,H by f(h) = a;h. f is surjective and if f(h,) = f(hy), a;h; = a;h,
gives h, = h,, hence injective. Therefore, f is a bijection and |a,H| = |H|. O

Thus,

G|=) |H|=n|H| =|G: H| |H|
i=1

Example. G = §,,

Example.G=S,and H =4,,

therefore there are two distinct left cosets of A,, in S

ne

16
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Corollary. If |G| = p is prime, then

in particular, G is cyclic.

proof. Letg € G and g # e, assume p = |G| = |(9)||G : (g)|. Since |(g)| > 1 and p is prime, then
|(g)] =pand |G : (g)| = 1. Finally, since |(g)| = |g| = p, by a theorem earlier we have that

G

1%
N

p

Corollary. If g € G, then |g| divides |G|

Example. True of False: There exists a group with 24 elements that contains an element of order 9.

Answer . False! Corollary says 9 would have to divide 24.

2.6 Finitely Generated Abelian Groups

Definition (Direct Product). Given groups G4, ..., G,,, there direct product is the group

Gy x ... x G, ={(91,-9,) | 9; € G;}

and

(917 ""gn) '(hb 200 hn) = (gl * hl? 9 9n* hn)

Theorem. Z,, x Z,, = Z,,,, Wwhen gcd(m,n) =1

Example.
Zig X g X Lg = L5 X Lig
= Zyy
in particular, Z; x Z5 x Zg is cyclic.
Example.Is Z, x Z, = Z,>?

Answer. No, ged(p, p) = p, so the theorem doesn’t apply.

Corollary. Let n = pil coe p;ik be a prime factorization of n, then

Z, 27 ¢+, X ... XL ¢
o Pl pik

17
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Theorem. Let G4, ..., G,, be groups with g; € G,. Set m; := |g;| < oo for each 1 < i < n. Then

’(917 7gn)| = lcm(m17 7mn)

Proposition. G, H groups, then
GxH=HXxxG
Need to know how to prove this. More generally, if G4, ..., G,, groups, o € S,,,

Gl X ... X Gn = Ga(l) X ... X Ga(n)

Example.
Lo X Loy X Sy =28y X Loy X Lg
& Zigg X Lig X Sy

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups). Let G be a finitely
generated abelian group. Then there exists a unique integer n and unique primes py, ..., p;
such that

t
——

G%Zp?x...pr;k XL X ..XT

where p, is a prime number (not necessarily distinct) and ¢, » and the factors are unique up
to isomorphism.

Remark. if G is a finite abelian group, then

= ry X ... X r
G=Z,n Z,

with p, not necessarily distinct primes and decomposition is unique up to reordering.
Example. Z, is the only group up to isomorphism of order 2.
Example. V, = {I,, A, B,C} =~ Z, X Z,, and Z, is another abelian group of order 4.

Example. How many abelian groups of order 36 are there up to isomorphism?

36 = 22.3% = 2.2.32. By FTFGAG, there are 4 groups
1. Z, x Zg

2. Ly X Ly X Ly

3. Zy X Ly X Lz X Ly

4. Ly x Ly x Ly

In group 1-4, what’s the largest order an element has in the group?

* 36 since G = Zsg

18
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* (11 1)) =lem(1], 1], 1) = 18
c|1111)=6
c |(111)]=12

Example. How many abelian groups of order 80 are there up to isomorphism?

* Zy X Zs

Ly X Ly % Lg

Lg X Ly X L

Lig X Ly X Lig X Ziy X Ly,
Lo X Ly X Ly X L

Example. How many abelian groups of order 48 are there up to isomorphism?
48 =3.24

R ZRAT

® Zig X Ly X Ly

* Zg X ZLg X Ly

® Zg X Ly X Lo X Ly

¢ Ly X Ly X Lig X Lig X Ly

Lemma. Let G4, ...,G,, be groups and H, < G, for each i =1,...,n. Then H; x ... x H,, <
H x..xg,

Theorem. Let G be a finite abelian group. If m divides |G|, then there exists H < G such that
|H| =m.

proof. By FTFGAG, G =[] | Z, with p; prime. Since m devides |G| = IT, p;¢ with a; < ;.

ged(p;,p; )

T4
D,

D;

‘1ri—ai

(1m)| = p. Set

Soin Zp:z )

19
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2.7 Group Homomorphisms

Definition (Group Homomorphism) . Let G, H be groups, A group homomorphism is a

function ¢ : G — H such that

©(91+92) = »(91) * (92)

for all g;, g5 € G.

Remark. Every isomorphism is a homomorphism.
Note. A bijective homomorphism is an isomorphism.

Example. SL,(R) is the special linear group of 2 x 2 metrices.
G = SL,(R) := {[‘CL Z] | a,b,c,d € R,ad — be + o}

define
det : G — R\ {0}
A+ det(A)
also, R \ {0} is a group with multiplication. From linear algebra, if A, B € G,
det(AB) = det(A) - det(B)
hence det is a group homomorphism but not an isomorphism.

Example. Let

(n) = 0 if nis even
P =31 ifnis odd

This is a group homomorphism. Let m,n € Z,

Case 1. m,n both even, then p(m +n) =0=0+ 0= p(m) + ¢(n)
Case 2. m even, n odd, then p(m+n) =1=0+1= p(m) + ¢(n)
Case 3. m,n both odd, then p(m+n) =0=14+1= ¢(m) + ¢(n)

Therefore , ¢ is a group homomorphism. Also, ¢ is not an isomorphism.
Example. Define
¢ : Zs — S3 by
0+—id
1 (123)
2+ (13 2)

This is a group homomorphism.
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Example. ¢ : Z — Z, ¢(n) = 8n is a group homomorphism.

Example (Trivial Homomorphism). Let G, H be groups, then the trivial homomorphism is the
function ¢ : G — H defined by ¢(g) = ey forall g € G.

Definition. Let ¢ : G — H be a group homomorphism.
The image of ¢ is the set
im(¢) := {¢(g) | g € G}

The kernel of ¢ is the set
ker(p) := {g € G | p(9) = eg}

Theorem. If ¢ : G — H is a group homomorphism, then ¢(es) = ey. In particular, e €
ker(¢) and ey € im(yp).

proof. Consider

Proposition. Let ¢ : G — H be a group homomorphism. Then im(¢) < H and ker(y) < G.

proof. We'll prove ker(¢) < G. Let a,b € ker(p). WTS:

eq € ker(yp)
Va,b € ker(p). ab~! € ker(yp)

For first one, ¢(es) = ey, so by definition, e, € ker(y). For second one, let a, b € ker(y), then
¢(a) = p(b) = ey. Thus,

p(ab™') = p(a) - o(b?)

= eH.e;‘Il
:eH

Therefore, ab™! € ker(p) and so ker(p) < G. The proof for im(¢) < H is similar. O
Example. Define ¢ : Z — S, given by ¢(n) = (1 2 4)™. Check if ¢ is a group homomorphism:
e(m+n)=(124)mm"

21



Groups and subgroups

(1 24)™(124)"
= p(m)p(n)

im(p) = (12 4)

ker(p) = 3Z = (3)

—~
~

Example. Fix n > 2, define ¢ : S,, — Z, given by
() = 0 if o is even
P71 if o is odd
For example, ¢((1 2)) =1, ¢((1 2 3)(1 4)(3 4)) =0.

im(p) = Zy
ker(¢) = A

n

Proposition. A group homomorphism ¢ : G — H is injective iff

ker(p) = {eg}

proof.
(=) Assume g is injective. e € ker(y) by theorem. If g # e, then ¢(g) # ¢(es) = ey. Thus,

ker(p) = {eg}-
(<) Assume ker(¢p = {es}). WTS: ¢ injective. Let ¢(a) = ¢(b), then

pla) p(a) = pla) (1)

pla) o(b) =
ol =

b =eg

=b

hence ¢ is injective. O
Example. G = (R?, +) and define

p:G— G

ol = L

is ¢ injective? Equivalently, is null( [; ;D = {6}?
w 1] =s

Definition. Let N < G. We say N is normal if gN = Ng for all g € G. In this case, we write
N <G.
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Example. If G is abelian, then every subgroup N < G is normal.

Example. N < G when |G : N] = 2. For example, ((1 2 3)) = N < S5,|S5: N|=2,50 N I 55 =
G. More generally, |S,, : A,| =% =2s04,d85,,.

m‘ﬁls

Example. H = ((1 2)) is not a normal subgroup of S;.
(1 3)H ={(13),(1 3)( 2)}
={(13),(123)}
H(13)={(13),(1 )
={(13),(13

)

(13)}
2)}

o (1 3)H # H(1 3) and H is not normal.

Proposition. If ¢ : G — H is a group homomorphism, then

ker(p) < G

proof. Set N :=ker(p).Let g € G. WTS: gN = Ng.
Claim(1). gN = {z € G | ¢(z) = ¢(9)} = ¢ *({g})
proof. Let P={z € G | () = ¢(g)}. Let z € P, by definition ¢(x) = ¢(g), then
e(g) " p(z) =
p(g'z) =ey
glzreN
=(9-97")=
=g-(g7'z) €gN
= P CgN
Let z € gN, then
Jye N.z=gy
o(z) = p(gy) = ©(g9)e(y) = ¢(9)

then x € P and so gN = P. d
Claim(2). Ng={z € G | p(z) = ¢(g9)} = e *({g})

proof. Similar to claim (1), leave as exercise. O
By claim (1) and (2), gN = Ng and so N < G. O
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Proposition (Quotient Group). Let N < G, then define

G
— :={gN
N {gN | g € G}

with multiplication given by
aN +bN := (ab)N

then

1. JQV with multiplication is a group (callled the factor/quotient group).

2. Ifr: G — % is given by w(g) = gN, then = is a onto group homomorphism with ker(7) =
N. In particular, every normal subgroup is the kernel of some group homomorphism.

proof. First, we’ll show the multiplication is well-defined. Let aN = o’ N and bN = b’ N, then
ala’ € Nand b1’ € N
WTS: (ab)~ta’b’ € N. Observe that
(ab)~ta’t’ = b la ta’t’
but a~'a € N and N normal, b"'N = Nb~!, then
b (a"ta)b’ =nb~'b for some n € N
€ N since b0’ € N

1. Now, check % is a group:
* Associative: let aN,bN,cN € %,
(aN+bN)+cN = abN «cN
= (ab)eN
= a(bc)N
=aN +(bc)N
=aN+«(bN-cN)
* Identity: N = eN is the identity since eN +aN = aN+.eN = aN for all aN € %

* Inverse: Let aN € &, then a !N is the inverse since aN -a™'N = a !N -aN = N.
2. Let a,b € G and observe that

m(ab) = (ab)N

=aN-bN
= m(a)m(b)
so 7 s a group homomorphism. Clearly, = is surjective. Let alN € ker(7), m(a) = e G = N iff
a € N. Hence ker(m) = N.
(I
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Example. G = Z, N = (6) < G. Note that % = % is a group with 6 elements:

(6) = 6Z
1+6Z
5+6Z

Here GLZ is an abelian group with 6 elements. By FTFGAG,

Z
— =78 =7, x 7y

6Z
Example. G = S5, N = ((1 2 3)),
G__ S
N {((123))
G G| 6
Zl=g: N =2 =29
RS
by fact from class, < is isomorphic to Z,.
Example. If n > 2, show A, < S, and
Sn
1 =

n

proof. First, |S, : A, | = \Sn%An| =2.ByHW4,0A, = A, o forallo € S,, sobydef, A, <

S,, and

= 1S, 1 A,| =2

S
ATL

SO = is a group with 2 elements, thus isomorphic to Z,.
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Chapter 3

Rings and Fields

3.1 Rings and Fields

Definition (Ring). A ring R is a set with two associative binary operations, addition (+) and
multiplication () such that:

1. (R,+) is an abelian group
2. (Distributivity) For a,b,c € R, we have

a+(b+c)=a+b+a-c
(b+c)ra=bra+c-a
when multiplication is commutative (Va,b € R. a-b = b-a), we say R is commutative.

Notation:
* ab will be written for a - b
* The additive identity of R is called “zero” and is denoted 0, so

VreR.O+r=r+0=r

Example.

1

2.
3.

. Z with usual + and - is a commutative ring.

Same thing for Q, R or C

is not commutative.
More generally, M, (R) is a non-commutative ring when n > 2.
o(R)={f:R — R | f continuous}
e>®(R)={f:R— R | f diff}
these are commutative rings where addition and multiplication are defined pointwise.
Z,, is a commutative ring. The addition and multiplication are modular arithmetic:

a+b=7rwherea+b=gm+7rwith0<r<m

M,(R) = {['z Z] | a,b,c,d € R} is a ring with matrix addition and matrix multiplication, and
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a-b=17r"wherea-b=¢m-+7r with0<r" <m
7. If R, S are rings, then R x S is a ring.
8. If R is a commutative ring, then
Riz] ={a,2" + ...+ a1z +aq | a; € R}

is the polynomial with variable x and coefficients in R, then R[z] is a commutative ring.

Proposition. If R is a ring, then every z € R has a unique additive inverse —z and additive
Cancellation holds:

r+y=z+z€R—y=2€R

Proposition. If R is a ring, then the following hold for any a,b € R:
1. 0a=0

2. a+(—=b)=(—a)+b

3. (—a)+«(—b) = ab

proof.

1. On classwork 8

2. WTS:
ab+a(—b) =0
ab+ (—a)b=0

first, observe that

next,

Definition (Ring homomorphism). A function ¢ : R — S is a ring homomorphism if R and
S are rings and for all r,r, € R,
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p(r1 +19) = p(r1) + ¢(r3) p(ry=12) = @(r1) = p(r3)

If ¢ is bijective, then ¢ is a ring isomorphism.

Example. define ¢ : Z — Z, by

(n) = 0 if n is even
~ | 1lifnisodd

Definition (Identity). Let R be a ring. We say R has identity/unity element, denoted 1 €
Rif
VaER.l°a=a-1:a

that is, 1 is an identity element with respect to multiplication.

Note. 1 € R, if exists, is unique.

Example.

* Z,Q,R,C have identity elements 1.

* Z,,, 1 is the identity element.

* M, (R) has identity element I,,.

* Z[z] has an identity element 1.

* For m > 2, Consider R = m+Z, R is a ring.

Definition (Unit). Let R be a ring with 1 € R. We say a € R is a unit if there exists b € R such
that ab = ba = 1. In this case, b is called the inverse of a and is denoted ¢!, and

RX :={a € R | ais a unit}

Example.

¢ ZX ={1,-1}

* Q¥ =Q\{0},R¥ =R\ {0},C¥ =C\ {0}

. Mn(R)Xz{[Z Z] \ad—bc#O}

* R=2Zyx], f=22+1€R, f-f=1,50 f € R

Definition (Zero Divisor). Let R be a commutative ring. We say that a € R is a zero-divisor
if there exists 0 # b € R such that ab =0

Example.
* The only zero-divisor in Z,Q,R,C is O

* R=74,2-2=4=0,s0 2 is a zero-divisor in Z,
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R=74,2:3=6=0,4-3=12=0, s0 2, 3, and 4 are zero-divisors in Zg
R = M2(R),

then A, B are zero-divisors in M, (R)
R=17Zx], f=2x+2, f- f =0, f is a zero-divisor in Z, ]
R = Zg, zero divisors are {0, 3,6}

R = Z, zero divisors are {0}

Definition (Domain and Field). Let R be commutative ring with 1 € R and 1 # 0. We say that
R is a(n) (integral) domain if the only zero-divisor is 0. We say that R is a field if

RX = R\ {0}
that is, every non-zero element has an inverse in a field.
Proposition. In a commutative ring, the units and zero-divisors are disjoint sets.

proof. On homework. O

Corollary. If R is a field, then R is a domain.

Example.

Not every domain is a field. For example, Z is a domain but not a field.

R, Q, C are all fields

Z is a field

Z¢ is not a domain (nor a field!)

R]z] is a domain but not a field: f = 1 —  does not have an inverse in R[x]

fle—— =" ¢ Rl
n=0

1—z

and R[z]* = R\ {0}
Proposition. If R is a domain and ab = ac with a # 0, then b = c.

proof. Consider

a(b—c) =ab—ac
=ab—ab
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=0

since R is a domain and a # 0, this forces b — ¢ = 0, so b = c. O

Proposition. if m > 0 is composite, then Z,, is not a domain. If p is a prime, then Z,, is a field
and hence a domain.

proof. Assume m is composite, there exists a,b € Z withm =aband 1 <a<m,1 <b < m.
Therefore, a,b € Z,, and a,b # 0. But ab = m = 0 in Z,,,, they are zero-divisors and Z,, is not
a domain.

Now assume p is a prime and leta € Z, with a # 0. We know that ged(a, p) = 1. By the Euclidean
Algorithm there exists s, t € Z with

1 =ged(a,p) = as + pt
use the Division Algorithm to write
s=qp+r
with 0 < r < p. Now r € Z, and want to show ar =1 € Z,:

ar = ar + aqp

= a(r +qp)
=as
=as+pt
=1

hence r = a~!in Z,. Since a is arbitrary, every non-zero element in Z, has an inverse and Z,, is
a field. O

Definition (Characteristic). Let R be a commutative ring and 1 # 0. The characteristic of R,
denoted char(R) is the smallest positive interger n such that

1+14+...4+41=0
N — e’

if no such n exists, then char(R) = 0.

Example.

* char(Z) =0

* char(Z,,) =m

e char(Zy x Zy) =2

Proposition. If R is a commutative ring with 1 # 0 and char(R) = n > 0, then

YVaeR. at+a+..+a=0
N —
n
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proof. Leta € R and consider

at+a+..+a=a1+...+a-1
N —— e’
n

a(1+...4+1)
a+0
0

3.2 Fermat’s and Euler’s Theorems

Definition. Fix m > 0. Given a, b € Z, we write a = bmod m “a is equiv. to b mod m” if

a+mZ=>b+mZ

equivalently,
a=bmodm <= a—bemZ
Example.
50 = 2mod 4
= —2mod4
= —6mod 4

Example. The equation 2z = 1 mod 7 has integer solutions of the form
VneZ.x=4+Tn
Example. 2z = 0 mod 6,

z =3+ 6n where n € Z

Tz = 6n where n € Z

Remark. If R is a commutative ring with 1 # 0, then R¥ is anabelian group with multiplication
and identify element 1. In particulay, if F is a field, then

FX =F\{0} ={a€F:a+0}

is an abelian group.

Theorem (Fermat's Little Theorem). If p is a prime number and a € Z with p } a then

aP~! = 1modp

proof. Since p is prime, p% is a field. In particular, (

elements. By Lagrange’s Theorem,

Z
pZ

)X is an abelian group with p —1
(a+pZ)P~' =1+ pZ
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therefore

a?~! = 1modp

Corollary. If p is prime and a € Z then a? = amod p

proof.
* Case 1: a = Omod p, then a? = 0P = 0 = amod p
* Case 2: a # 0mod p. In this case, FLT says a?~! = 1 mod p. Multiplying both sides by a yields:

aP = amodp

O
Example. Find z € Z,; such that z = 8% mod 13
Answer.
g103 _ g96g7
=8"mod13
=86.8
= (—5)%+8mod 13
= ((-5))"-8
= (—1)3-8mod 13
=-8
so z = 5.
Example. Show 2!1:213 — 1 is not divisible by 11.
proof.
211,213 — 211,210 . 23
=1.8mod 11
=38
so 211213 _ 1 is not divisible by 11. O

Example. Prove that n?3 — n is divisible by 15 for every n € Z.
proof. Let’s show n** = nmod 3 and n3® = nmod 5.

For 3:
e Case 1: n=0mod 3, n® =0 =nmod3
* Case 2: n # 0mod 3,

3 =n32.n

1-nmod3
n
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For 5:
e Case 1: n=0mod 5, n® =0 =nmod5
* Case 2: n # 0mod 5,

n3 =n32.n

= ()" en

1-nmod5
n

Therefore, n3% — n is divisible by 15.

Z

Example. Solve for z in 575,

Or Zs;:

% — 16 =0 in Zg,
use the solution to find all integer solutions to
2% — 16 = 0mod 31

Answer.

232 — 16 = 22 — 16 mod 31
= (x —4)(z +4) mod 31
= Omod 31
since ;% is a field,

z—4 =0mod31
z+4 =0mod31

Recall. Fix m > 0, then
©(m) = number of positive integers n < m withged(m,n) =1
=|{neZ, :ged(n,m=1)}
Example. ¢(8) =4
Example. p prime, p(p) =p—1
Proposition. Fox m > 0 and a € Z,,, then

* If gcd(a,m) # 1, then a is a zero-divisor in Z,,,
e If ged(a,m) =1, thenaisaunitinZ,,

Corollary.

()

is an abelian group with ¢(m) elements, the elements are those a + mZ with ged(a, m) = 1.
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Theorem (Euler's Theorem). If m > 0 and a € Z with ged(a, m) = 1, then

a?™) = 1modm

Remark. If m is prime in Euler’s Theorem, then on recovers FLT.
Example. 5% = 1 mod 8 by Euler’s Theorem since ((8) = 4.

Example. find all integers solutions to

52" = 1mod 18
here m = 18, ¢(18) = 6. Any solution z has ged(z, 18) = 1. So by Euler’s Theorem,
2?18 = 26 = 1mod 18
o)

523! = 5rmod 18
to find z, lets use the Division Algorithm
18=3:5+3
5=1.3+2
3=1.2+1
2=2.140
now run in reverse
=3—1.2
=3—1.(5—3)
=2.3-1.5
=2+18—-3-5)—1+5
=2.18—7+5
1=(—7)+5mod 18

all integer solutions are of the form
x = —7+ 18n where n € Z

Example. Is 7 a perfect square in the following rings?
1- Z23
2- Z31

Answer.
1. Suppose it is. That is, there exists x € Z such that 22 = 7 mod 23. By FLT, 2> = 1 mod 23, so we
would have

1 = 2?2 mod 23
(a:2)11

=7l
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=-1
= 22mod 23

Contradiction. So 7 is not a perfect square in Zy;.
2. Yes it is a perfect square in Zs;.

z? = 7Tmod 31
=7+3-31mod31
= 100 mod 31
z = +10mod 31

soz =10 or z = 21.
Example. Find z € Z,; such that 2% = z mod 15.
Answer . By Eular’s Theorem, 28 = 1 mod 15. So

2% = 288.92m0d 15
=1-4mod15
=4mod15

so r = 4.

3.3 The Field of Fractions

Definition (The field of fractions). Let R be a domain. The field of fractions is

R x (R\{0})
(@b) € Rx R | b20)

~

Q=

where
(a,b) ~ (¢,d) <= ad = bc

we’ll write ¢ as the equivalence class of (a,b) € Q.

Example. Z is a domain and its field of fractions is Q.

Example. C is a domain and its field of fractions is C.

Example. More generally, if FF is a field, then it is its own field of fraction.
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Definition(Degree). Let R be a ring with 1 # 0. The degree of f € R[z] with f # 0isdeg(f) =
n where

f=a, 2"+ .. +a,z+aq
with a,, # 0
Example.

o f=2%+1,deg(f) =2
o f =5z + 223, deg(f) =4

Theorem. R is a domain iff R[z] is a domain
proof.

* (=) Assume R is a domain. Let f,g € R[z] with f #0and g # 0. WTS: f-g #0, or
deg(f - g) = deg(f) + deg(g)

Remark. Does not hold when R is not a domain. E.g., Z,[z],

f=2x deg(f) =1
g=2z3+2z deg(g) =3

feg=22"deg(f-g) =2

Write
f=a,2"+...+az+a
with a,, # 0, then deg(f) = n, and
g=b,xzm+..+bx+0b
with b, # 0, then deg(g) = m. Then
feg=a,b,z"™ + ...+ a;bz + ayb,
since a,, # 0, b,, # 0 and R is domain, a,b,, # 0, so
deg(f+g) = n+m = deg(f) + deg(g)

in particular, R[x] is a domain.
* («<=) R C R[z] and R|[z] is a domain so it follows that R must also be a domain.

Example. Z[z] is a domain. Its field of fractions is

{(f,9) € Zz] x Z[z] | g # 0}

~

{%‘f,geZ[x],g#0}=
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that is, the field of fractions of Z[z] is the set of rational functions with integer coefficients:

1 Tt + 22°
1—22" 1027 + 22+ 1

€ field of fractions

Theorem. If R is a domain with field of fractions @, then @ is a field where

a c¢ ad+bc
e @ b
a b._ab
cd

proof. First check + is well defined. Let § ‘g—,/, WTS:

/

@ c_d ¢
b d b d
that is, WTS:
ad+bc a'd+bc , , ,
- v <=>deﬁnition (ad + bc)b’d = bd(a’d + b'c)
Since
a ad , ,
3 = ? = ab’ = ba
then

(ad + bc)b’'d = (ad)(b'd) + (be)(b'd)
= ab’d? + bdcb’ since R commutative
= ba’d? + bdcb’
= (bd)(a’d) + (bd)(b’c) since R commutative
= (bd)(a’d +b'c) by distribution
therefore + is well-defined.
Exercise. Show multiplication is well-defined.
Since R is a commutative ring, + and - are commutative binary operations on @,
Claim. ¢ is the additive identity.
a n 0 a-145-0 _a
b 1 b1 b

Claim. 1 is the multiplicative identity.
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Claim.
a —a
(5)=7 <@
a —a_ab—ba_ 0 _0
b b b2 p2 1

Exercise. Show + and - are associative.

Claim. If § # 0, then

Finally, we show Distributivity holds:

a (c e\ a (cf+de
69) (5

a(cf) + a(de)

b(df)
__ab(cf) + ab(de)
B b2(df)
_ac(bf) + (bd)ae
B b2(df)
_ac, ae
“bd " bf
O
Proposition. If R is a domain with field of fractions @, then the function
t:R—Q
a
at— —
1
is a injective ring homomorphism.
proof. Leta,b€ R
1.
a+b a b
ta+b) = . —I—I—I—L(a)-i-L(b)
2. t(a+b) = t(a)+¢(b) Omitted
3. v is injective: Assume ¢(a) = ¢(b), then definition of ¢ gives
a_b —=a'l=bl<=a=b
11T “=
O
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Remark. Previous propositions says we can view R C Q. In fact, @ is the smallest field containing
R.

Theorem. If R is a domain and Q is its field of fractions with + : R — @ from the previous
proposition, then for any injective ring homomorphism ¢ : R — F with F a field, there exists
a unique injective field homomorphism @ : Q — F

39



	Sets and relations
	Review on Sets
	Equivalence relation
	Binary Operation
	Isomorphic Binary Structure

	Groups and subgroups
	Groups
	Subgroups
	Generating sets
	Orbits, Cycles and Alternating Groups
	Cosets and Lagrange's Theorem
	Finitely Generated Abelian Groups
	Group Homomorphisms

	Rings and Fields
	Rings and Fields
	Fermat's and Euler's Theorems
	The Field of Fractions


