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Chapter 1

Preliminary

1.1 Math Induction

Definition 1.1.1 (Set of integers). Z={...,-2,—1,0,1,2,...}
Definition 1.1.2 (Set of whole numbers). O = {0,1,2,...}

Definition 1.1.3 (Set of natural numbers). N={1,2,3,...}

1.1.1 Language of sets
» Universal set (S)
« Subset (C, ©)

 Intersections
ANB={zeS|xe ANz € B}

* Union
AUB={zeS|xe€ AV e B}

Definition 1.1.4 (Well ordering principle). Every nonempty subset of O contains a least (smallest) element.
Theorem 1.1.1 (Archimedean Principle). If a,b € N then 3¢ € N. ac > b

Proof. Suppose false. Then Vu € N. au < b. Now S = {b — au | u € N} € Q. By W.O. Principle, there exists
a least element in S.

b—aMye S
b—a(My+1)=(a—anyg) —a<b—ang €S

Theorem 1.1.2 (1st principle of Fin. Induction). Let S C N s.t.
1. 18
2. Ifke Sthenk+1€ S

Then S = N.

Proof. Let T = {M € N|m ¢ S}. Suppose T' # &, then T has a least element m. m # 1 since 1 € S so
m—1€eN.Nowletk=m—1¢€ S, meaning k+ 1= (m —1)+1=m € S. Contradiction. Suppose T = &,
then S =N. O
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Chapter 2

Divisibility Theorem

2.3 Greatest Common Devisor

Definition 2.3.1 (Cancellation). Let a,b,c € Z,c # 0 and ac = bc. Then a = b.

Proof.
ac = bc
ac—bc=0
(a—b)c=0
Since ¢ # 0
a—b=0

a =

Theorem 2.3.1. Assume a,b € Z that not both 0 and d = gcd(ab). Then 3s,t € Z. as + bt = d
Corollary 2.3.1. Ifc | aand c | d then ¢ | d = gcd(a, b)
Corollary 2.3.2. Let a,b € Z, not both O and let T = {ax + by | x,y € Z} = Zy + Zs, then T = Zq

Proof. (a) To prove that T C Z,. Let x,y € Z
az + by = (aod)z + (bod)y

for some ag, by € Z
= d(aoz + boy) € Zqg

gives that T C Z4

(b) To prove that Zy C T. We can find s,t € Z s.t. as + bt =d. Let m € Z

ud = u(as + bt)
= a(us) +b(ut) € T
=Z4qCT

.'.Zd =T

Corollary 2.3.3. Let a,b € Z not both 0 with d = gcd(a,b). Then ged($, %) = 1.
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6 CHAPTER 2. DIVISIBILITY THEOREM
Proof. d|aasa=aedasay=§.3s,t € Z. as + bt = d, gives that

by =

ISHIRS

a(]dS + b()dt =d
d(aos + bot) =d
ags + bt =1

Corollary 2.3.4. If a | cand b | ¢ with ged(a,b) = 1 then ab | c.

Proof. a | ¢, b| cmeans ¢ = acy = bdy for some ¢y, by € Z. Now 1 = as + bt for some s,t € Z. So

c=-cl
= c(as + bt)
= cas + cbt
= bdgas + acgbt
= ab(dys + cot)

ab|c

Lemma 2.3.1. Leta,b€Z, b#0. Ifa=qb+r, q,r € Z then ged(a,b) = ged(b, r)
Theorem 2.3.2. Assume a,b € Z, not both 0. k € N. Then

ged(ka, kb) = k ged(a, b)
Proof. We know that gcd(ka, kb) = e where e > 0

Ze = {kax + kby | x,y € Z}
= {k(az +by) | 2,y € Z)
=k{ax +by|x,yecZ}

Let d = ged(a, b)

k(Zd) = Z(kd)
= Z(kd)

Corollary 2.3.5. If a,b € Z not both 0 and a # b € Z then
ged(ka, kb) = |k| ged(a, )

Definition 2.3.2 (Common multiple). a,b € Z are nonzero. ¢ € Z is a common multiple if a | cand b | ¢, or
¢ = as = bt, for some s,t € 7.

Definition 2.3.3 (Least common multiple). If a,b € Z are nonzero, their least common multiple is an integer
m € Ns.t.

(@) a|mandb|m
(b) m is smallest positive multiple of a and b

Notation: lem(a, b)



Theorem 2.3.3. If a,b € Z and nonzero, an LCM exists and is unique.
Theorem 2.3.4. Let a,b € Z be nongero, then
ab = lem(a, b) - ged(a, b)

Proof. Let d = ged(a,b), then a = dr, b = ds for some r,s € Z. Let m = %b d = ax + by for some x,y € Z.
Let ¢ be any common multiple of ¢ and b.

c
m b

Sinceb|canda | c
ez
=m]|c
=m < |c|
Then m = lem(a, b) O
Corollary 2.3.6. If a,b € Z are nonzero and m = lem(a, b) then m devides all common multiple of a and b.
Theorem 2.3.5. If a,b € N then lem(a, b) = ab iff ged(a,b) = 1

2.5 Diophantine Equations

Goal. Study solution to az + by = ¢, a,b,c € Z

Theorem 2.5.6. Let ax + by = c be given with a, b, c be fixed. Then there exists a solution for x and y precisesly
iff ged(a,b) | . When a solution (zo,yo) € Z X Z exists then all relations are given by

(2,y) = (wo+ (2) t,y0 — (%) t) e

Proof. Recall {ax + by | z,y € Z} = Zd where d = ged(a,b). So a solution (zg,y0) € Z x Z exists iff d | c.
Assume the solution exists and (z, y) is any other solution.
ar+by =c
axrg+ by = ¢
a(z — o) + by —yo) =0
a(z — o) = —b(y — yo)
a

g(l’*ﬂﬂo) = *g(y — %)

a b
ng (d’d) =1
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Wegetz —zo=t(2),t€Z,x=a0+t (%), teZ O

Theorem 2.5.7. For ax + by = ¢, where a, b, ¢ are fixed, not all 0, then a solution exists iff d = gcd(a,d) | c. If
(x0,y0) is a solution for (x,y), then all solution are

(w.) = (w0 + 2 w0+ 5
z,Yy)=\7To dayO d

Proof. When d | c. Assume (xg,yo) is one solution and (z, y) are other.

azxg + byg = ¢

ar+by=-c

a(z — zo) +b(y —yo) =0
a(zo —x) = b(y — yo)

%(330 —z)= %(y —%0)

Since 4,2 € 7, ged (%, %) = 1, given
b, sa
2l (§) @
b
Y} (@)
b
r—x9=1-— tez)
a
b
=20+t —
a

ISHRS
N\
~
ISES
~_
I

| o
—
N
[=)

|
NS
N—

at _

d—yo Yy

_at

Y =1%o d

Follows that
bt at

JR— b —_— — =
a(ﬂﬂoer)+ (Yo d) ¢
aro+0b +a—bt7@—c
0 Yo d d
axg + byg =c¢



Chapter 3

Primes

3.1 Fundamental Theorem of Arithmetic

Definition 3.1.1. P € N is prime if

1. P>1

2. Ifde Nwithd| Pthend=1,P
Definition 3.1.2. If P € N is prime, a,b € Z with P | abthen P | a or P | b.
Theorem 3.1.1. If m € N, m > 2 then m is a product of primes.

m=PP...P
And this is unique up to order of factors.
Lemma 3.1.1. If P € N is prime, a4, ...,a,, € Nwith P| ay,...,a,, when P | a; for some i.
Proof. Induct on m
Base case. m = 2. True from definition.

Inductive step. Let result be true for m = k. Suppose

P|a1aa23"'7ak+1
, then
P (a1,a2,...,a;)aks1
Plai,az,...,ap VP |ags:

3i.1§i§k—>P|aivP|ak+1
O

Theorem 3.1.2. Let m € N, m > 2. Then m = P1 P, ... P, where each P; is prime, and this is unique up to the
order of factors.

Proof. Let T = {n € N|n > 2 and n is not a product of prime}. To show that 7" is empty. Suppose not.
Select the a € T smallest element. Then a cannot be prime or a = P;, P; = a. Then a = be, b,c > 1.

b>1—c<a

c>1—b<a

=0bc¢T
b=PP...P, c=Q1Q2...Qs where P;, (), are prime
=a¢T
1

9



10 CHAPTER 3. PRIMES

Uniqueness Suppose
m:P1P2...Pt=Q1Q2...QS

where P;, ), are all prime.
Base case. Result is true for m = 2
Inductive step. Assume it’s true for all integers less than m, then
P im=P |Q1...Qs=m
=3j. P | Qj
since (); is prime

:>P1=Qj
m:P1P2...Pt:P1Q1...QS
:>P2...Pt:Q2...QS<m

By inductiont — 1 = s — 1 and P; = @, for 2 < i < t after relabeling

Corollary 3.1.1. If m € N, m > 1, then m = Plk1 . Ptkt where Py, ..., P, are distinct primes, k; > 1.
Ex3.1.1. 96=2-48=22.24=23.12=2%.6=2°.3

Theorem 3.1.3 (Pythagorean’s). v/2 ¢ Q

Proof. Suppose /2 = ¢ where a,b € Z. We can assume ged(a, b) = 1. Then

W2=a
20* = a?
2|a2¢2|a~aé2\a
dceZ.a=2c
2b% = 4c?
b? =262
2(v*=2]|b
= ged(a,b) #1
€
O

Theorem 3.1.4. Let a,b € N with ged(a,b) = 1 then the sequence {a,a + b,a + 2b,...} contains infinitely
many primes.

Definition 3.1.3 (Greatest Integer Function). If z € R, | x| denotes the greatest integer less than or equal to .
Theorem 3.1.5 (Mill’s Constant). 34 > 0. s.t. [x”SJ is a prime for all n

Proof. There is u,
f=auzr* +ay_12""t +--- 4+ ao where u > 1

and a; € Z s.t. f(k)is a prime forall k € N O



Chapter 4

The Theory of Congruences

4.2 Congruences

Definition 4.2.1 (Congruence). a,b € Z are congrent modulo n for m € Nif n | b — a. Written as

a="b (modn)

By divisibility,
a=qn+r 0<r<u <= a=r (modn)
a=r (modn) < re{0,1,...,n—1}
Definition 4.2.2 (Complete Set of Residues). a1, as,...,a, is a complete set of residues modulo n if they are
congruent to 0,1,2,...,n — 1 in some order.

Theorem 4.2.1. Let n > 1,a,b,¢,d € Z. Then
(a) a=a (modn)

(b) a=10b (mod n) implies
b=a (modn)

(¢c) a=b (mod n)and b =a (mod n) implies
a = c¢ (mod n)
(d) a=b (mod n)and ¢ = d (mod n) implies

ac =bd (modn) anda+b=c+d (mod n)

(e) b= c (mod n) implies
ab = ac (mod n)

() a=b (mod n)and k > 1 implies
a® = b (mod n)

11



12 CHAPTER 4. THE THEORY OF CONGRUENCES

Theorem 4.2.2. a,b,c € Z, n € N. If ca = ¢b (mod n) and ged(c,n) = 1, then a = b (mod n)
Proof.

ca = cb (mod n)
n|ch—ca
n|clb—a)
n|b—a

a=1b (mod n)

Pl

O
Corollary 4.2.1. If P is prime and P { n, n € N, then pa = pb (mod n) = a =b (mod n).
Theorem 4.2.3. Let a,b,c € Zand n € N. If ca = ¢b (mod n) then a = b (mod Z) where d = ged ¢, n
Proof.
ca = cb (mod n)
= n|cb-a)
n c
n=(g)d e=(g)d
n,c
c c
+ (Z)e=(5)? (med (3))
But ged (%, %) =1
n
= a=b (mod 3)
O

4.3 Binary and Decimal Representations of N
Theorem 4.3.1. Let b > 1, N € N, then we can write
N=a,b"+---+a1b+ag

where 0 < a; < b and a,, # 0. Also, this representation is unique.

4.4 Linear congruences

Theorem 4.4.1 (Chinese Remainder Theorem). If mq,...,m, € Nwith gcd(m;,m;) = 1if i # j. Then the
system

x =a; (modny)

x = as (mod ng)

r = a, (mod n,)

has a unique solution modulo N = nins...n,
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Proof. Let N; = X = mnz-ie The equation N;z =1 (mod n;) has a solution, z;. Now

m;

N;z; =1 (mod n;)
N;z; =0 (mod n;)

Let X = a1 N1z + -+ + a, N,z,. then

X=a114a0+...a,0 (mod ny)

X =a; (modnq)
Similarly, X = ay (mod no)

X=a; (modn;), i=1,2,...,r
we have a solution to system, X. Let Y be any other solution,

Y =X=a; (modny)
s |Y—X

But ged(n;,n;) =1ifi # 3
N|Y-Z
If Z=X (mod N)

Z =X (mod n;)
Z =X =a; (modn,)

Note that for all solutions,

r=X+kN, keZ

(if j # i since n; | N;)
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Chapter 5

Fermats’s Theorem

5.2 Fermat’s Little Theorem and Pseudoprimes

Theorem 5.2.1 (Fermat’s Theorem). Let p be a prime and a € Z. Then a?~! =1 (mod p).
Corollary 5.2.1. If p is a prime, then a? = a (mod p) for any integer a.

Theorem 5.2.2. If n is an odd pseudoprime, then M,, = 2™ — 1 is a larger one.

5.3 Wilson’s Theorem

Theorem 5.3.1. Let p be an odd prime. The equation > = —1 (mod p) has a solution iff p = 1 (mod 4).
Proof. Assume p =4k + 1, k > 1.

(p—1D!'= -1 (mod p)
—1)!

(p =11,2,3,...,2k][(2k+ 1)...(p — 1)]
p—2k=(4k+1) -2k
=2k+1
(p—1!'=11,2,3,...,2k][(p—2k)... (p—1)]
= (2k)![(p — 2k) ... (p—1)] (mod p)
= (2k)!(—1)%*(2k)! (mod p)
= [(2k)1)? (mod p)
Conversely, assume 2% = —1 has a solution. Assume a? = —1 (mod p), a € Z and p { a. By F.L.T,
a?~!' =1 (mod p)

=(-1)= (mod p)
=1 (mod p, by F.L.T.)
(-1)"= = +1
~1=pl2, L
(-7 =1
E 2%
2
p=4k+1

15
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Chapter 6

Number Theoretic Functions

Definition 6.0.1 (Convolution). Let f,g : N — Z, The convolution of f and g is

fxg: N—Z
f*gzaHZf(d)g(%)
dla

Definition 6.0.2.

fN—R
I(u) =u
Au)=1
1 u=1
€(u>_{o u>1
7(u)

u) = # of divisors of u

o(u) = Z d
d|u

w(u) :N—R
_J(=1)" wu=PP,...P.where Py,..., P, are distinct primes
0 otherwise

Definition 6.0.3. f : N — R is multiplicative if f(ab) = f(a)f(b) where gcd(a,b) = 1.
Lemma 6.0.1. If f : N > Rthen fxe= f=¢€x f
Lemma 6.0.2. If f,g: N > Rthen fxg=f=gx*f
Lemma 6.0.3. p is multiplicative.
Theorem 6.0.1. Let f,g,h : N — R, then
*frg=gxg
cexf=fre=f
s frlgth)=Frg+gxh
*(fxg)xh=fx(gxh)
o (f*0)u) = Ygp J(d) = Flu)

17
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Theorem 6.0.2. Let f,g: N — R be multiplicative. Then f * g is multiplicative.

Ex 6.0.1. Show that pu*71 = A

Proof. Because p, T are multiplicative, we have p x 7 is multiplicative. And multiplicative function is deter-
minied by value at p* where p is prime and k& > 0.

A(p*) =1
k
(nx7)(0") = u@")r(@*)
1=0

u(T(P") + pE)r (@) +0+---+0
k+1)+ (-1)k
1



Chapter 7

Euler’s Generalization of Fermat’s
Theorem

7.4 Properties of Phi Function

Theorem 7.4.1. If m € Nthenn =3}, ¢(d)

Proof. (1) Let Sq={a |1 < a < n,ged(a,n) =d}, then {1,2,...,n} = Uy, Sa, which is a disjoint union.

Inl = 154l
d|u

a€S;=d|a, a=dl
a

ged(a,n) =d <~ ng(d’g) =1

< gcd (Z,E) =1

d
|Sal = ¢ (%)
n=1_ |8
din
St
= ¢(d)

dln

19
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Proof. (2)

> o(d) =Y s (5)
dlu dlu

= (o xA)(u)
Both are multiplicative. Suppose to show that (¢ * \)(p*) = p*, where p is prime and k > 0.

Ck=0 (6 A)(1) = (A1) = 1
e k>1

Theorem 7.4.2.
" —1= H Dy(x)

d|n

where ®,(x) is a monic polynomial with coefficients in Z that does not factor over Q and deg ®4(x) = ¢(d).



Chapter 8

Primitive Roots and Indices

8.1 The Order of an integer mod n

Definition 8.1.1 (Order). If gcd(a,n) = 1 order of mod n is the smallest k > 1s.t. a* =1 (mod n)
Theorem 8.1.1. Order of a devisor of ¢(n).
Theorem 8.1.2. Ifd | ¢(p) =p — 1 and ¢ — 1 = 0 (mod p), there’s exactly d incongruent.

Theorem 8.1.3 (Lagrange). Let f(z) = ana™ + - - - + a1x + ap be a polynomial with a,, Z 0 (mod p) where p
is a prime, a; € Z. Then the congruence equation f(x) =0 (mod p) has at most n incongruent solutions.

Proof. If n = 1 we have a1z + ap = 0 (mod p), then g(a,p) = 1, implies there is a unique solution mod p.
Now assume the result is true for n — 1 and a € Z is one solution of f(z) =0 (mod p). Divide f(z) by x — a

flx)=(xr—a)q(x)+r,reZ
0 (mod p)
r=0 (mod p)

If ¢ is any solution with ¢ Z a  (mod p)

Since ged(p,c —a) =1

q(c) =0 (mod p)
q(z) = apz™ ' + lower degree

By induction
q(x) =0 (mod p)

has at most n — 1 incongruent solutions mod p, then the equation has at most n incongruent solutions mod
p-

21
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Lemma 8.1.1. Let f(z),g(x) be polynomials with integers coefficients. If a is a solution to f(x)g(z) = 0
(mod p), then either f(a) =0 (mod p) or g(a) =0 (mod p).

Proof.

O
Corollary 8.1.1. Assume p is prime and d | ¢(p) = p — 1, then x* — 1 has mostly d incongruent solutions mod
p-

Theorem 8.1.4. Assume pis a prime and d | p — 1 = ¢(p), then there are precisely ¢(d) incongruent modulo p
integers of order d modulo p.

Proof. Let a(d) be the number of noncongruent integers of order d mod p. Every integer 1,2,...,p — 1 has
an order mod p, entails that
o(d)
p—1= Y
d|lp—1
By Lagrange’s,
¢(d)
p—1=>_
dlp—1
If we have Vd | p — 1. a(d) < ¢(d) we must have Vd | p — 1. a(d) = ¢(d). O

Theorem 8.1.5. If p is a prime, then 2p has a prime root.

Proof. If p is an odd prime, ¢(2p) = ¢(2)¢(p) = p — 1. We can find an odd primitive root of p. If a is prime
root of p then a + p is a prime root of p. Either a or a + p is odd. We can assume « is odd, then ged(a, 2p) = 1.
If a has order h mod 2p, then

2p a1
pla" -1
h>p—1=9¢(2p)

a is a prime root of 2p

Lemma 8.1.2. If p is an prime, p{ a, a odd, then

p—1

(/) = (—1)Ze2r 5]
Theorem 8.1.6. If p # q are odd primes, then
(#/a)(afp) = (D)7 *7)
Proof. Look at

1 1
S:{(m,y)eR|1§x§p2,1§y§2}

with interger coordinates, |S| = (251) (452).
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Claim. None of the points in S are on the line y = %x.

Proof. Suppose it does

_ b
m==u
q
pm = qu

plau=plu
But 1<u< Tl
1
O
Now let S = T} U T, where T} are points in S lower than the line y = %x and Ty are points in .S above.

Then

p—1

w-E [

k=1
and

Corollary 8.1.2. Assume p # q are odd primes. Then
(/a) = (/) if {Z

(?/a) = —=(9/p) f p=q=3 (mod 4)
Ex 8.1.1. For what primes P > 3 is (3/p) = 1?
Answer. Suppose P =1 (mod 4)
(3/p) = (p/3) =1if p=1 (mod 3)

by C.R.T, need P =1 (mod 1) 2. If P =3 (mod 4), we have (3/p) = —(r/3), means p = 2 (mod 3). By C.R.T,
P=11= -1 (mod 12), gives that

.\ J1 if p==£1 (mod 12)
(%p) = {—1 otherwise
Ex 8.1.2. Compute (61/79)
Answer.
(6%/79) = (79/61)
= (15o)
(
(

= (%/o1) (1)
=-1



