MAT 541 Intro to Number Theory Lecture Notes

George Z. Miao

2023 Spring

Preliminary

1.1 Math Induction

Definition 1.1.1 (Set of integers). $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

Definition 1.1.2 (Set of whole numbers). $\mathbb{O} = \{0, 1, 2, \dots\}$

Definition 1.1.3 (Set of natural numbers). $\mathbb{N} = \{1, 2, 3, \dots\}$

1.1.1 Language of sets

- Universal set (S)
- Subset (⊆, ⊂)
- · Intersections

$$A \cap B = \{x \in S \mid x \in A \land x \in B\}$$

• Union

$$A \cup B = \{x \in S \mid x \in A \lor x \in B\}$$

Definition 1.1.4 (Well ordering principle). *Every nonempty subset of* $\mathbb O$ *contains a least (smallest) element.*

Theorem 1.1.1 (Archimedean Principle). *If* $a, b \in \mathbb{N}$ *then* $\exists c \in \mathbb{N}$. ac > b

Proof. Suppose false. Then $\forall u \in \mathbb{N}$. au < b. Now $S = \{b - au \mid u \in \mathbb{N}\} \in \mathbb{O}$. By W.O. Principle, there exists a least element in S.

$$b - aM_0 \in S$$

$$b - a(M_0 + 1) = (a - an_0) - a < b - an_0 \in S$$

Theorem 1.1.2 (1st principle of Fin. Induction). Let $S \subseteq \mathbb{N}$ s.t.

1. $1 \in S$

2. If $k \in S$ then $k + 1 \in S$

Then $S = \mathbb{N}$.

Proof. Let $T=\{M\in\mathbb{N}\mid m\notin S\}$. Suppose $T\neq\varnothing$, then T has a least element m. $m\neq 1$ since $1\in S$ so $m-1\in\mathbb{N}$. Now let $k=m-1\in S$, meaning $k+1=(m-1)+1=m\in S$. Contradiction. Suppose $T=\varnothing$, then $S=\mathbb{N}$.

Divisibility Theorem

2.3 Greatest Common Devisor

Definition 2.3.1 (Cancellation). Let $a, b, c \in \mathbb{Z}, c \neq 0$ and ac = bc. Then a = b. *Proof.*

$$ac = bc$$

$$ac - bc = 0$$

$$(a - b)c = 0$$

Since $c \neq 0$

$$a - b = 0$$
$$a = b$$

Theorem 2.3.1. Assume $a, b \in \mathbb{Z}$ that not both 0 and $d = \gcd(ab)$. Then $\exists s, t \in \mathbb{Z}$. as + bt = d

Corollary 2.3.1. *If* $c \mid a$ and $c \mid d$ then $c \mid d = \gcd(a, b)$

Corollary 2.3.2. Let $a, b \in \mathbb{Z}$, not both 0 and let $T = \{ax + by \mid x, y \in Z\} = \mathbb{Z}_a + \mathbb{Z}_b$, then $T = \mathbb{Z}_d$

Proof. (a) To prove that $T \subseteq \mathbb{Z}_d$. Let $x, y \in \mathbb{Z}$

$$ax + by = (a_0d)x + (b_0d)y$$

for some $a_0, b_0 \in \mathbb{Z}$

$$= d(a_0x + b_0y) \in \mathbb{Z}_d$$

gives that $T \subseteq \mathbb{Z}_d$

(b) To prove that $\mathbb{Z}_d \subseteq T$. We can find $s,t \in \mathbb{Z}$ s.t. as + bt = d. Let $m \in \mathbb{Z}$

$$ud = u(as + bt)$$
$$= a(us) + b(ut) \in T$$
$$\Rightarrow \mathbb{Z}_d \subseteq T$$

$$\therefore \mathbb{Z}_d = T$$

Corollary 2.3.3. Let $a, b \in \mathbb{Z}$ not both 0 with $d = \gcd(a, b)$. Then $\gcd(\frac{a}{b}, \frac{b}{d}) = 1$.

Proof. $d \mid a$ as $a = a_0 d$ as $a_0 = \frac{a}{d}$. $\exists s, t \in \mathbb{Z}$. as + bt = d, gives that

$$b_0 = \frac{b}{d}$$

$$a_0 ds + b_0 dt = d$$

$$d(a_0 s + b_0 t) = d$$

$$a_0 s + b_0 t = 1$$

Corollary 2.3.4. If $a \mid c$ and $b \mid c$ with gcd(a, b) = 1 then $ab \mid c$.

Proof. $a \mid c, b \mid c$ means $c = ac_0 = bd_0$ for some $c_0, b_0 \in \mathbb{Z}$. Now 1 = as + bt for some $s, t \in \mathbb{Z}$. So

$$c = c1$$

$$= c(as + bt)$$

$$= cas + cbt$$

$$= bd_0as + ac_0bt$$

$$= ab(d_0s + c_0t)$$

$$ab \mid c$$

Lemma 2.3.1. Let $a, b \in \mathbb{Z}$, $b \neq 0$. If a = qb + r, $q, r \in \mathbb{Z}$ then gcd(a, b) = gcd(b, r)

Theorem 2.3.2. Assume $a, b \in \mathbb{Z}$, not both 0. $k \in \mathbb{N}$. Then

$$gcd(ka, kb) = k gcd(a, b)$$

Proof. We know that gcd(ka, kb) = e where e > 0

$$\mathbb{Z}e = \{kax + kby \mid x, y \in \mathbb{Z}\}$$
$$= \{k(ax + by) \mid x, y \in \mathbb{Z}\}$$
$$= k\{ax + by \mid x, y \in \mathbb{Z}\}$$

Let $d = \gcd(a, b)$

$$= k(\mathbb{Z}d) = \mathbb{Z}(kd)$$
$$= \mathbb{Z}(kd)$$

Corollary 2.3.5. *If* $a, b \in \mathbb{Z}$ *not both 0 and* $a \neq b \in \mathbb{Z}$ *then*

$$gcd(ka, kb) = |k| gcd(a, b)$$

Definition 2.3.2 (Common multiple). $a, b \in \mathbb{Z}$ are nonzero. $c \in \mathbb{Z}$ is a **common multiple** if $a \mid c$ and $b \mid c$, or c = as = bt, for some $s, t \in \mathbb{Z}$.

Definition 2.3.3 (Least common multiple). *If* $a, b \in Z$ *are nonzero, their least common multiple is an integer* $m \in \mathbb{N}$ *s.t.*

- (a) $a \mid m$ and $b \mid m$
- (b) m is smallest positive multiple of a and b

Notation: lcm(a, b)

Theorem 2.3.3. If $a, b \in \mathbb{Z}$ and nonzero, an LCM exists and is unique.

Theorem 2.3.4. Let $a, b \in \mathbb{Z}$ be nonzero, then

$$ab = lcm(a, b) \cdot gcd(a, b)$$

Proof. Let $d = \gcd(a, b)$, then a = dr, b = ds for some $r, s \in \mathbb{Z}$. Let $m = \frac{ab}{d}$. d = ax + by for some $x, y \in \mathbb{Z}$. Let c be any common multiple of a and b.

$$\begin{split} \frac{c}{m} &= \frac{c}{\frac{ab}{d}} \\ &= \frac{cd}{ab} \\ &= \frac{c(ax+by)}{ab} \\ &= \frac{cax}{ab} + \frac{cby}{ab} \\ &= \frac{c}{b}x + \frac{c}{a}y \end{split}$$

Since $b \mid c$ and $a \mid c$

Then m = lcm(a, b)

Corollary 2.3.6. If $a, b \in \mathbb{Z}$ are nonzero and m = lcm(a, b) then m devides all common multiple of a and b.

Theorem 2.3.5. If $a, b \in \mathbb{N}$ then lcm(a, b) = ab iff gcd(a, b) = 1

2.5 Diophantine Equations

Goal. Study solution to ax + by = c, $a, b, c \in \mathbb{Z}$

Theorem 2.5.6. Let ax + by = c be given with a, b, c be fixed. Then there exists a solution for x and y precisesly iff $gcd(a,b) \mid c$. When a solution $(x_0,y_0) \in \mathbb{Z} \times \mathbb{Z}$ exists then all relations are given by

$$(x,y) = \left(x_0 + \left(\frac{b}{a}\right)t, y_0 - \left(\frac{a}{d}\right)t\right), t \in \mathbb{Z}$$

Proof. Recall $\{ax + by \mid x, y \in \mathbb{Z}\} = \mathbb{Z}d$ where $d = \gcd(a, b)$. So a solution $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ exists iff $d \mid c$. Assume the solution exists and (x, y) is any other solution.

$$ax + by = c$$

$$ax_0 + by_0 = c$$

$$a(x - x_0) + b(y - y_0) = 0$$

$$a(x - x_0) = -b(y - y_0)$$

$$\frac{a}{d}(x - x_0) = -\frac{b}{d}(y - y_0)$$

$$\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$$

$$\frac{b}{a} \mid \left(\frac{a}{d}(x - x_0)\right)$$

$$\Rightarrow \frac{b}{a} \mid x - x_0$$

We get
$$x - x_0 = t\left(\frac{b}{a}\right)$$
, $t \in \mathbb{Z}$, $x = x_0 + t\left(\frac{b}{a}\right)$, $t \in \mathbb{Z}$.

Theorem 2.5.7. For ax + by = c, where a, b, c are fixed, not all 0, then a solution exists iff $d = \gcd(a, b) \mid c$. If (x_0, y_0) is a solution for (x, y), then all solution are

$$(x,y) = \left(x_0 + \frac{bt}{d}, y_0 + \frac{at}{d}\right)$$

Proof. When $d \mid c$. Assume (x_0, y_0) is one solution and (x, y) are other.

$$ax_0 + by_0 = c$$

$$ax + by = c$$

$$a(x - x_0) + b(y - y_0) = 0$$

$$a(x_0 - x) = b(y - y_0)$$

$$\frac{a}{d}(x_0 - x) = \frac{b}{d}(y - y_0)$$

Since $\frac{a}{d}$, $\frac{b}{d} \in \mathbb{Z}$, $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$, given

$$\frac{b}{a} \mid \left(\frac{a}{d}\right)(x - x_0)$$

$$\frac{b}{a} \mid (x - x_0)$$

$$x - x_0 = t \cdot \frac{b}{a}$$

$$x = x_0 + t \cdot \frac{b}{a}$$

$$\frac{a}{d} \left(t \cdot \frac{b}{a}\right) = \frac{b}{a}(y_0 - y)$$

$$\frac{at}{d} = y_0 - y$$

$$y = y_0 - \frac{at}{d}$$

Follows that

$$a(x_0 + \frac{bt}{d}) + b(y_0 - \frac{at}{d}) = c$$
$$ax_0 + by_0 + \frac{abt}{d} - \frac{bat}{d} = c$$
$$ax_0 + by_0 = c$$

Primes

3.1 Fundamental Theorem of Arithmetic

Definition 3.1.1. $P \in \mathbb{N}$ is prime if

- 1. P > 1
- 2. If $d \in \mathbb{N}$ with $d \mid P$ then d = 1, P

Definition 3.1.2. *If* $P \in \mathbb{N}$ *is prime,* $a, b \in \mathbb{Z}$ *with* $P \mid ab$ *then* $P \mid a$ *or* $P \mid b$.

Theorem 3.1.1. *If* $m \in \mathbb{N}$, $m \geq 2$ *then* m *is a product of primes.*

$$m = P_1 P_2 \dots P_t$$

And this is unique up to order of factors.

Lemma 3.1.1. If $P \in \mathbb{N}$ is prime, $a_1, \ldots, a_m \in \mathbb{N}$ with $P \mid a_1, \ldots, a_m$ when $P \mid a_i$ for some i.

Proof. Induct on m

Base case. m=2. True from definition.

Inductive step. Let result be true for m = k. Suppose

$$P \mid a_1, a_2, \dots, a_{k+1}$$

, then

$$P \mid (a_1, a_2, \dots, a_k) a_{k+1}$$

 $P \mid a_1, a_2, \dots, a_k \lor P \mid a_{k+1}$
 $\exists i. \ 1 \le i \le k \to P \mid a_i \lor P \mid a_{k+1}$

Theorem 3.1.2. Let $m \in \mathbb{N}$, $m \ge 2$. Then $m = P_1 P_2 \dots P_t$ where each P_i is prime, and this is unique up to the order of factors.

Proof. Let $T=\{n\in\mathbb{N}\mid n\geq 2 \text{ and } n \text{ is not a product of prime}\}$. To show that T is empty. Suppose not. Select the $a\in T$ smallest element. Then a cannot be prime or $a=P_1,\,P_1=a$. Then $a=bc,\,b,\,c>1$.

$$\begin{array}{c} b>1\to c< a\\ c>1\to b< a\\ \Rightarrow b,c\notin T\\ b=P_1P_2\dots P_t,\; c=Q_1Q_2\dots Q_s\; \text{where}\; P_i,Q_j\; \text{are prime}\\ \Rightarrow a\notin T\\ \bot \end{array}$$

10 CHAPTER 3. PRIMES

Uniqueness Suppose

$$m = P_1 P_2 \dots P_t = Q_1 Q_2 \dots Q_s$$

where P_i, Q_j are all prime.

Base case. Result is true for m=2

Inductive step. Assume it's true for all integers less than m, then

$$P_1 \mid m \Rightarrow P_1 \mid Q_1 \dots Q_s = m$$

 $\Rightarrow \exists j. \ P_1 \mid Q_j$

since Q_j is prime

$$\Rightarrow P_1 = Q_j$$

$$m = P_1 P_2 \dots P_t = P_1 Q_1 \dots Q_s$$

$$\Rightarrow P_2 \dots P_t = Q_2 \dots Q_s < m$$

By induction t-1=s-1 and $P_i=Q_i$ for $2\leq i\leq t$ after relabeling

Corollary 3.1.1. If $m \in \mathbb{N}$, m > 1, then $m = P_1^{k_1} \dots P_t^{k_t}$ where P_1, \dots, P_t are distinct primes, $k_j \geq 1$.

Ex 3.1.1.
$$96 = 2 \cdot 48 = 2^2 \cdot 24 = 2^3 \cdot 12 = 2^4 \cdot 6 = 2^5 \cdot 3$$

Theorem 3.1.3 (Pythagorean's). $\sqrt{2} \notin \mathbb{Q}$

Proof. Suppose $\sqrt{2} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$. We can assume $\gcd(a, b) = 1$. Then

$$b\sqrt{2} = a$$

$$2b^2 = a^2$$

$$2 \mid a^2 \Rightarrow 2 \mid a \cdot a \Rightarrow 2 \mid a$$

$$\exists c \in \mathbb{Z}. \ a = 2c$$

$$2b^2 = 4c^2$$

$$b^2 = 2c^2$$

$$2 \mid b^2 \Rightarrow 2 \mid b$$

$$\Rightarrow \gcd(a, b) \neq 1$$

$$\bot$$

Theorem 3.1.4. Let $a, b \in \mathbb{N}$ with gcd(a, b) = 1 then the sequence $\{a, a + b, a + 2b, \dots\}$ contains infinitely many primes.

Definition 3.1.3 (Greatest Integer Function). *If* $x \in \mathbb{R}$, |x| *denotes the greatest integer less than or equal to* x.

Theorem 3.1.5 (Mill's Constant). $\exists A > 0$. s.t. $|x^{n^3}|$ is a prime for all n

Proof. There is u_a

$$f = a_u x^u + a_{u-1} x^{u-1} + \dots + a_0$$
 where $u \ge 1$

and $a_i \in \mathbb{Z}$ s.t. f(k) is a prime for all $k \in \mathbb{N}$

The Theory of Congruences

4.2 Congruences

Definition 4.2.1 (Congruence). $a, b \in \mathbb{Z}$ are congrent modulo n for $m \in \mathbb{N}$ if $n \mid b - a$. Written as

$$a \equiv b \pmod{n}$$

By divisibility,

$$a = qn + r$$
 $0 \le r < u \iff a \equiv r \pmod{n}$
 $a \equiv r \pmod{n} \iff r \in \{0, 1, \dots, n - 1\}$

Definition 4.2.2 (Complete Set of Residues). a_1, a_2, \ldots, a_n is a complete set of residues modulo n if they are congruent to $0, 1, 2, \ldots, n-1$ in some order.

Theorem 4.2.1. Let $n > 1, a, b, c, d \in \mathbb{Z}$. Then

- (a) $a \equiv a \pmod{n}$
- (b) $a \equiv b \pmod{n}$ implies

$$b \equiv a \pmod{n}$$

(c) $a \equiv b \pmod{n}$ and $b \equiv a \pmod{n}$ implies

$$a \equiv c \pmod{n}$$

(d) $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ implies

$$ac \equiv bd \pmod{n}$$
 and $a + b \equiv c + d \pmod{n}$

(e) $b \equiv c \pmod{n}$ implies

$$ab \equiv ac \pmod{n}$$

(f) $a \equiv b \pmod{n}$ and $k \ge 1$ implies

$$a^k \equiv b^k \pmod{n}$$

Theorem 4.2.2. $a, b, c \in \mathbb{Z}$, $n \in \mathbb{N}$. If $ca \equiv cb \pmod n$ and gcd(c, n) = 1, then $a \equiv b \pmod n$ *Proof.*

$$ca \equiv cb \pmod{n}$$

$$\Rightarrow n \mid cb - ca$$

$$\Rightarrow n \mid c(b - a)$$

$$\Rightarrow n \mid b - a$$

$$\Rightarrow a \equiv b \pmod{n}$$

Corollary 4.2.1. If P is prime and $P \nmid n$, $n \in \mathbb{N}$, then $pa \equiv pb \pmod{n} \Rightarrow a \equiv b \pmod{n}$.

Theorem 4.2.3. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $ca \equiv cb \pmod{n}$ then $a \equiv b \pmod{\frac{n}{d}}$ where $d = \gcd{c}$, $n \in \mathbb{N}$.

$$ca \equiv cb \pmod{n}$$

$$\Rightarrow n \mid c(b-a)$$

$$n = \left(\frac{n}{d}\right)d, \quad c = \left(\frac{c}{d}\right)d$$

$$\Rightarrow \frac{n}{d} \mid \frac{c}{d}(b-a)$$

$$\Rightarrow \left(\frac{c}{d}\right)a \equiv \left(\frac{c}{d}\right)b \pmod{\left(\frac{n}{d}\right)}$$

But $\gcd\left(\frac{c}{d}, \frac{n}{d}\right) = 1$

$$\Rightarrow a \equiv b \pmod{\frac{n}{d}}$$

4.3 Binary and Decimal Representations of \mathbb{N}

Theorem 4.3.1. Let b > 1, $N \in \mathbb{N}$, then we can write

$$N = a_m b^m + \dots + a_1 b + a_0$$

where $0 \le a_i < b$ and $a_m \ne 0$. Also, this representation is unique.

4.4 Linear congruences

Theorem 4.4.1 (Chinese Remainder Theorem). If $m_1, \ldots, m_r \in \mathbb{N}$ with $gcd(m_i, m_j) = 1$ if $i \neq j$. Then the system

$$x \equiv a_1 \pmod{n_1}$$

$$x \equiv a_2 \pmod{n_2}$$

$$\vdots$$

$$x \equiv a_r \pmod{n_r}$$

has a unique solution modulo $N = n_1 n_2 \dots n_r$

Proof. Let $N_i = \frac{N}{m_i} = \frac{n_1 n_2 \dots n_r}{n_i}$. The equation $N_i x \equiv 1 \pmod{n_i}$ has a solution, x_i . Now

$$N_i x_i \equiv 1 \pmod{n_i}$$

$$N_i x_i \equiv 0 \pmod{n_j}$$
 (if $j \neq i$ since $n_j \mid N_i$)

Let $\mathbb{X} = a_1 N_1 x_1 + \cdots + a_r N_r x_r$. then

$$X \equiv a_1 1 + a_2 0 + \dots a_r 0 \pmod{n_1}$$
$$X \equiv a_1 \pmod{n_1}$$

Similarly, $X \equiv a_2 \pmod{n_2}$

$$X \equiv a_i \pmod{n_i}, i = 1, 2, \dots, r$$

we have a solution to system, \mathbb{X} . Let \mathbb{Y} be any other solution,

$$\mathbb{Y} \equiv \mathbb{X} \equiv a_i \pmod{n_i}$$
$$n_1 \mid \mathbb{Y} - \mathbb{X}$$

But $gcd(n_i, n_j) = 1$ if $i \neq j$

$$N \mid \mathbb{Y} - \mathbb{Z}$$

If $Z \equiv \mathbb{X} \pmod{N}$

$$Z \equiv \mathbb{X} \pmod{n_i}$$
$$Z \equiv \mathbb{X} \equiv a_i \pmod{n_i}$$

Note that for all solutions,

$$x = \mathbb{X} + kN, \quad k \in \mathbb{Z}$$

Fermats's Theorem

5.2 Fermat's Little Theorem and Pseudoprimes

Theorem 5.2.1 (Fermat's Theorem). Let p be a prime and $a \in \mathbb{Z}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Corollary 5.2.1. If p is a prime, then $a^p \equiv a \pmod{p}$ for any integer a.

Theorem 5.2.2. If n is an odd pseudoprime, then $M_n = 2^n - 1$ is a larger one.

5.3 Wilson's Theorem

Theorem 5.3.1. Let p be an odd prime. The equation $x^2 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{4}$. *Proof.* Assume p = 4k + 1, $k \ge 1$.

$$\begin{array}{l} (p-1)! \equiv -1 \pmod{p} \\ (p-1)! = [1,2,3,\ldots,2k][(2k+1)\ldots(p-1)] \\ p-2k = (4k+1)-2k \\ = 2k+1 \\ (p-1)! = [1,2,3,\ldots,2k][(p-2k)\ldots(p-1)] \\ \equiv (2k)![(p-2k)\ldots(p-1)] \qquad \qquad (\text{mod } p) \\ \equiv (2k)!(-1)^{2k}(2k)! \qquad \qquad (\text{mod } p) \\ \equiv [(2k)!]^2 \qquad \qquad (\text{mod } p) \end{array}$$

Conversely, assume $x^2 \equiv -1$ has a solution. Assume $a^2 \equiv -1 \pmod p$, $a \in \mathbb{Z}$ and $p \nmid a$. By F.L.T,

$$a^{p-1} \equiv 1 \pmod{p}$$

$$a^{p-1} = (a^2)^{\frac{p-1}{2}}$$

$$\equiv (-1)^{\frac{p-1}{2}} \pmod{p}$$

$$\equiv 1 \pmod{p}, \text{ by F.L.T.}$$

$$(-1)^{\frac{p-1}{2}} = \pm 1$$

$$-1 \Rightarrow p \mid 2, \quad \bot$$

$$(-1)^{\frac{p-1}{2}} = 1$$

$$\frac{p-1}{2} = 2k$$

$$p = 4k + 1$$

Number Theoretic Functions

Definition 6.0.1 (Convolution). Let $f, g : \mathbb{N} \to \mathbb{Z}$, The convolution of f and g is

$$f * g : \mathbb{N} \longrightarrow \mathbb{Z}$$
$$f * g = a \longmapsto \sum_{d|a} f(d)g\left(\frac{a}{d}\right)$$

Definition 6.0.2.

$$\begin{split} f: \mathbb{N} &\longrightarrow \mathbb{R} \\ I(u) &= u \\ \lambda(u) &= 1 \\ \epsilon(u) &= \begin{cases} 1 & u = 1 \\ 0 & u > 1 \end{cases} \\ \tau(u) &= \# \text{ of divisors of } u \\ \sigma(u) &= \sum_{d \mid u} d \\ \mu(u) : \mathbb{N} &\longrightarrow \mathbb{R} \\ &= \begin{cases} (-1)^r & u = P_1 P_2 \dots P_r \text{ where } P_1, \dots, P_r \text{ are distinct primes} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Definition 6.0.3. $f: \mathbb{N} \to \mathbb{R}$ is multiplicative if f(ab) = f(a)f(b) where gcd(a, b) = 1.

Lemma 6.0.1. *If* $f : \mathbb{N} \to \mathbb{R}$ *then* $f * \epsilon = f = \epsilon * f$

Lemma 6.0.2. If $f, g : \mathbb{N} \to \mathbb{R}$ then f * g = f = g * f

Lemma 6.0.3. μ is multiplicative.

Theorem 6.0.1. Let $f, g, h : \mathbb{N} \to \mathbb{R}$, then

•
$$f * g = g * g$$

•
$$\epsilon * f = f * \epsilon = f$$

•
$$f * (q + h) = f * q + q * h$$

•
$$(f * q) * h = f * (q * h)$$

•
$$(f * \sigma)(u) = \sum_{d|u} f(d) = F(u)$$

Theorem 6.0.2. Let $f, g : \mathbb{N} \to \mathbb{R}$ be multiplicative. Then f * g is multiplicative.

Ex 6.0.1. *Show that* $\mu * \tau = \lambda$

Proof. Because μ, τ are multiplicative, we have $\mu * \tau$ is multiplicative. And multiplicative function is determined by value at p^k where p is prime and $k \ge 0$.

$$\lambda(p^k) = 1$$

$$(\mu * \tau)(p^k) = \sum_{i=0}^k \mu(p^i)\tau(p^{k-i})$$

$$= \mu(1)\tau(p^k) + \mu(p)\tau(p^{k-1}) + 0 + \dots + 0$$

$$= 1(k+1) + (-1)k$$

$$= 1$$

Euler's Generalization of Fermat's Theorem

7.4 Properties of Phi Function

Theorem 7.4.1. If $m \in \mathbb{N}$ then $n = \sum_{d \mid n} \phi(d)$

Proof. (1) Let $S_d = \{a \mid 1 \le a \le n, \gcd(a, n) = d\}$, then $\{1, 2, \dots, n\} = \bigcup_{d \mid u} S_d$, which is a disjoint union.

$$|n| = \sum_{d|u} |S_d|$$

$$a \in S_d \Longrightarrow d \mid a, \ a = dl$$

$$\gcd(a, n) = d \iff \gcd\left(\frac{a}{d}, \frac{n}{d}\right) = 1$$

$$\iff \gcd\left(l, \frac{n}{d}\right) = 1$$

$$|S_d| = \phi\left(\frac{n}{d}\right)$$

$$n = \sum_{d|n} |S_d|$$

$$= \sum_{d|n} \phi\left(\frac{n}{d}\right)$$

$$= \sum_{d|n} \phi(d)$$

Proof. (2)

$$\sum_{d|u} \phi(d) = \sum_{d|u} \phi(d)\lambda\left(\frac{u}{d}\right)$$
$$= (\phi * \lambda)(u)$$

Both are multiplicative. Suppose to show that $(\phi * \lambda)(p^k) = p^k$, where p is prime and $k \ge 0$.

- k = 0 $(\phi * \lambda)(1) = \phi(1)\lambda(1) = 1$
- $k \ge 1$

$$(\phi * \lambda)(p^k) = \sum_{i=0}^k \phi(p^i)\lambda(p^{k-i})$$

= 1 + (p - 1) + (p^2 - p) + \cdots + (p^k - p^{k-1})
= p^k

Theorem 7.4.2.

$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$

where $\Phi_d(x)$ is a monic polynomial with coefficients in $\mathbb Z$ that does not factor over $\mathbb Q$ and $\deg \Phi_d(x) = \phi(d)$.

Primitive Roots and Indices

8.1 The Order of an integer mod n

Definition 8.1.1 (Order). If gcd(a, n) = 1 order of mod n is the smallest $k \ge 1$ s.t. $a^k \equiv 1 \pmod{n}$

Theorem 8.1.1. Order of a devisor of $\phi(n)$.

Theorem 8.1.2. If $d \mid \phi(p) = p - 1$ and $x^d - 1 \equiv 0 \pmod{p}$, there's exactly d incongruent.

Theorem 8.1.3 (Lagrange). Let $f(x) = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial with $a_n \not\equiv 0 \pmod{p}$ where p is a prime, $a_i \in \mathbb{Z}$. Then the congruence equation $f(x) \equiv 0 \pmod{p}$ has at most n incongruent solutions.

Proof. If n=1 we have $a_1x+a_0\equiv 0\pmod p$, then g(a,p)=1, implies there is a unique solution mod p. Now assume the result is true for n-1 and $a\in\mathbb{Z}$ is one solution of $f(x)\equiv 0\pmod p$. Divide f(x) by x-a

$$f(x) = (x - a)q(x) + r, r \in \mathbb{Z}$$

$$f(a) \equiv 0 \pmod{p}$$

$$r \equiv 0 \pmod{p}$$

If c is any solution with $c \not\equiv a \pmod{p}$

$$0 \equiv f(c) \pmod{p}$$
$$\equiv (c - a)q(c) + r \pmod{p}$$
$$\equiv (c - a)q(c) \pmod{p}$$

Since gcd(p, c - a) = 1

$$q(c) \equiv 0 \pmod{p}$$

$$q(x) = a_n x^{n-1} + \text{ lower degree}$$

By induction

$$q(x) \equiv 0 \pmod{p}$$

has at most n-1 incongruent solutions mod p, then the equation has at most n incongruent solutions mod p.

Lemma 8.1.1. Let f(x), g(x) be polynomials with integers coefficients. If a is a solution to $f(x)g(x) \equiv 0$ (mod p), then either $f(a) \equiv 0 \pmod{p}$ or $g(a) \equiv 0 \pmod{p}$.

Proof.

$$f(a)g(a) \equiv 0 \pmod{p}$$

$$\Rightarrow p \mid f(a)g(a)$$

$$\Rightarrow p \mid f(a) \lor p \mid g(a)$$

$$\Rightarrow f(a) \equiv 0 \pmod{p} \lor g(a) \equiv 0 \pmod{p}$$

Corollary 8.1.1. Assume p is prime and $d \mid \phi(p) = p - 1$, then $x^{\alpha} - 1$ has mostly d incongruent solutions mod

Theorem 8.1.4. Assume p is a prime and $d \mid p-1=\phi(p)$, then there are precisely $\phi(d)$ incongruent modulo pintegers of order d modulo p.

Proof. Let $\alpha(d)$ be the number of noncongruent integers of order $d \mod p$. Every integer $1, 2, \ldots, p-1$ has an order mod p, entails that

$$p-1 = \sum_{d|p-1}^{\alpha(d)}$$

By Lagrange's,

$$p-1 = \sum_{d|p-1}^{\phi(d)}$$

If we have $\forall d \mid p-1$. $\alpha(d) \leq \phi(d)$ we must have $\forall d \mid p-1$. $\alpha(d) = \phi(d)$.

Theorem 8.1.5. If p is a prime, then 2p has a prime root.

Proof. If p is an odd prime, $\phi(2p) = \phi(2)\phi(p) = p - 1$. We can find an odd primitive root of p. If a is prime root of p then a+p is a prime root of p. Either a or a+p is odd. We can assume a is odd, then gcd(a,2p)=1. If a has order $h \mod 2p$, then

$$2p \mid a^h - 1$$
$$p \mid a^h - 1$$
$$h \ge p - 1 = \phi(2p)$$

a is a prime root of 2p

Lemma 8.1.2. *If* p *is an prime,* $p \nmid a$, a *odd, then*

$$(a/p) = (-1)^{\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ka}{p}\right]}$$

Theorem 8.1.6. If $p \neq q$ are odd primes, then

$$(p/q)(q/p) = (-1)^{(\frac{p-1}{2}\frac{q-1}{2})}$$

Proof. Look at

$$S = \left\{ (x, y) \in \mathbb{R} \mid 1 \le x \le \frac{p - 1}{2}, 1 \le y \le \frac{q - 1}{2} \right\}$$

with interger coordinates, $|S| = \left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)$.

Claim. None of the points in S are on the line $y = \frac{q}{p}x$.

Proof. Suppose it does

$$m = \frac{p}{q}u$$

$$pm = qu$$

$$p \mid qu \Rightarrow p \mid u$$
 But
$$1 \le u \le \frac{p-1}{2}$$

$$\bot$$

Now let $S=T_1\cup T_2$ where T_1 are points in S lower than the line $y=\frac{q}{p}x$ and T_2 are points in S above. Then

$$|T_1| = \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{kq}{p} \right]$$

and

$$(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)} = (-1)^{|S|}$$

$$= (-1)^{|T_1|+|T_2|}$$

$$= (-1)^{|T_1|}(-1)^{|T_2|}$$

$$= (-1)^{\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{kq}{p}\right]} (-1)^{\sum_{l=1}^{\frac{q-1}{2}} \left[\frac{lp}{q}\right]}$$

$$= (q/p)(p/q)$$

Corollary 8.1.2. Assume $p \neq q$ are odd primes. Then

$$(p/q) = (q/p) \text{ if } \begin{cases} p \equiv 1 \pmod{4} \\ q \equiv 1 \pmod{4} \end{cases}$$

$$(p/q) = -(q/p) \text{ if } p \equiv q \equiv 3 \pmod{4}$$

Ex 8.1.1. For what primes P > 3 is (3/p) = 1?

Answer. Suppose $P \equiv 1 \pmod{4}$

$$(3/p) = (p/3) = 1 \text{ if } p \equiv 1 \pmod{3}$$

by C.R.T, need $P \equiv 1 \pmod{1}$ 2. If $P \equiv 3 \pmod{4}$, we have (3/p) = -(p/3), means $p \equiv 2 \pmod{3}$. By C.R.T, $P \equiv 11 \equiv -1 \pmod{12}$, gives that

$$(3/p) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{12} \\ -1 & \text{otherwise} \end{cases}$$

Ex 8.1.2. *Compute* (61/79)

Answer.

$$(61/79) = (79/61)$$

$$= (18/61)$$

$$= (3^{2} \cdot 2/61)$$

$$= (3^{2}/61)(2/61)$$

$$= -1$$