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Chapter 1

Preliminary

1.1 Math Induction

Definition 1.1.1 (Set of integers). Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Definition 1.1.2 (Set of whole numbers). O = {0, 1, 2, . . . }

Definition 1.1.3 (Set of natural numbers). N = {1, 2, 3, . . . }

1.1.1 Language of sets
• Universal set (S)

• Subset (⊆, ⊂)

• Intersections
A ∩B = {x ∈ S | x ∈ A ∧ x ∈ B}

• Union
A ∪B = {x ∈ S | x ∈ A ∨ x ∈ B}

Definition 1.1.4 (Well ordering principle). Every nonempty subset of O contains a least (smallest) element.

Theorem 1.1.1 (Archimedean Principle). If a, b ∈ N then ∃c ∈ N. ac > b

Proof. Suppose false. Then ∀u ∈ N. au < b. Now S = {b− au | u ∈ N} ∈ O. By W.O. Principle, there exists
a least element in S.

b− aM0 ∈ S

b− a(M0 + 1) = (a− an0)− a < b− an0 ∈ S

Theorem 1.1.2 (1st principle of Fin. Induction). Let S ⊆ N s.t.

1. 1 ∈ S

2. If k ∈ S then k + 1 ∈ S

Then S = N.

Proof. Let T = {M ∈ N | m /∈ S}. Suppose T 6= ∅, then T has a least element m. m 6= 1 since 1 ∈ S so
m− 1 ∈ N. Now let k = m− 1 ∈ S, meaning k + 1 = (m− 1) + 1 = m ∈ S. Contradiction. Suppose T = ∅,
then S = N.
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Chapter 2

Divisibility Theorem

2.3 Greatest Common Devisor

Definition 2.3.1 (Cancellation). Let a, b, c ∈ Z, c 6= 0 and ac = bc. Then a = b.

Proof.

ac = bc

ac− bc = 0

(a− b)c = 0

Since c 6= 0

a− b = 0

a = b

Theorem 2.3.1. Assume a, b ∈ Z that not both 0 and d = gcd(ab). Then ∃s, t ∈ Z. as+ bt = d

Corollary 2.3.1. If c | a and c | d then c | d = gcd(a, b)

Corollary 2.3.2. Let a, b ∈ Z, not both 0 and let T = {ax+ by | x, y ∈ Z} = Za + Zb, then T = Zd

Proof. (a) To prove that T ⊆ Zd. Let x, y ∈ Z

ax+ by = (a0d)x+ (b0d)y

for some a0, b0 ∈ Z
= d(a0x+ b0y) ∈ Zd

gives that T ⊆ Zd

(b) To prove that Zd ⊆ T . We can find s, t ∈ Z s.t. as+ bt = d. Let m ∈ Z

ud = u(as+ bt)

= a(us) + b(ut) ∈ T

⇒ Zd ⊆ T

∴ Zd = T

Corollary 2.3.3. Let a, b ∈ Z not both 0 with d = gcd(a, b). Then gcd(ab ,
b
d ) = 1.
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Proof. d | a as a = a0d as a0 = a
d . ∃s, t ∈ Z. as+ bt = d, gives that

b0 =
b

d
a0ds+ b0dt = d

d(a0s+ b0t) = d

a0s+ b0t = 1

Corollary 2.3.4. If a | c and b | c with gcd(a, b) = 1 then ab | c.

Proof. a | c, b | c means c = ac0 = bd0 for some c0, b0 ∈ Z. Now 1 = as+ bt for some s, t ∈ Z. So

c = c1

= c(as+ bt)

= cas+ cbt

= bd0as+ ac0bt

= ab(d0s+ c0t)

ab | c

Lemma 2.3.1. Let a, b ∈ Z, b 6= 0. If a = qb+ r, q, r ∈ Z then gcd(a, b) = gcd(b, r)

Theorem 2.3.2. Assume a, b ∈ Z, not both 0. k ∈ N. Then

gcd(ka, kb) = k gcd(a, b)

Proof. We know that gcd(ka, kb) = e where e > 0

Ze = {kax+ kby | x, y ∈ Z}
= {k(ax+ by) | x, y ∈ Z}
= k {ax+ by | x, y ∈ Z}

Let d = gcd(a, b)

= k(Zd) = Z(kd)
= Z(kd)

Corollary 2.3.5. If a, b ∈ Z not both 0 and a 6= b ∈ Z then

gcd(ka, kb) = |k| gcd(a, b)

Definition 2.3.2 (Common multiple). a, b ∈ Z are nonzero. c ∈ Z is a common multiple if a | c and b | c, or
c = as = bt, for some s, t ∈ Z.

Definition 2.3.3 (Least common multiple). If a, b ∈ Z are nonzero, their least common multiple is an integer
m ∈ N s.t.

(a) a | m and b | m

(b) m is smallest positive multiple of a and b

Notation: lcm(a, b)
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Theorem 2.3.3. If a, b ∈ Z and nonzero, an LCM exists and is unique.

Theorem 2.3.4. Let a, b ∈ Z be nonzero, then

ab = lcm(a, b) · gcd(a, b)

Proof. Let d = gcd(a, b), then a = dr, b = ds for some r, s ∈ Z. Let m = ab
d . d = ax + by for some x, y ∈ Z.

Let c be any common multiple of a and b.
c

m
=

c
ab
d

=
cd

ab

=
c(ax+ by)

ab

=
cax

ab
+

cby

ab

=
c

b
x+

c

a
y

Since b | c and a | c

∈ Z
⇒ m | c
⇒ m ≤ |c|

Then m = lcm(a, b)

Corollary 2.3.6. If a, b ∈ Z are nonzero and m = lcm(a, b) then m devides all common multiple of a and b.

Theorem 2.3.5. If a, b ∈ N then lcm(a, b) = ab iff gcd(a, b) = 1

2.5 Diophantine Equations

Goal. Study solution to ax+ by = c, a, b, c ∈ Z

Theorem 2.5.6. Let ax+ by = c be given with a, b, c be fixed. Then there exists a solution for x and y precisesly
iff gcd(a, b) | c. When a solution (x0, y0) ∈ Z× Z exists then all relations are given by

(x, y) =

(
x0 +

(
b

a

)
t, y0 −

(a
d

)
t

)
, t ∈ Z

Proof. Recall {ax+ by | x, y ∈ Z} = Zd where d = gcd(a, b). So a solution (x0, y0) ∈ Z × Z exists iff d | c.
Assume the solution exists and (x, y) is any other solution.

ax+ by = c

ax0 + by0 = c

a(x− x0) + b(y − y0) = 0

a(x− x0) = −b(y − y0)

a

d
(x− x0) = − b

d
(y − y0)

gcd

(
a

d
,
b

d

)
= 1

b

a
|
(a
d
(x− x0)

)
⇒ b

a
| x− x0
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We get x− x0 = t
(
b
a

)
, t ∈ Z, x = x0 + t

(
b
a

)
, t ∈ Z.

Theorem 2.5.7. For ax+ by = c, where a, b, c are fixed, not all 0, then a solution exists iff d = gcd(a, b) | c. If
(x0, y0) is a solution for (x, y), then all solution are

(x, y) =

(
x0 +

bt

d
, y0 +

at

d

)
Proof. When d | c. Assume (x0, y0) is one solution and (x, y) are other.

ax0 + by0 = c

ax+ by = c

a(x− x0) + b(y − y0) = 0

a(x0 − x) = b(y − y0)

a

d
(x0 − x) =

b

d
(y − y0)

Since a
d ,

b
d ∈ Z, gcd

(
a
d ,

b
d

)
= 1, given

b

a
|
(a
d

)
(x− x0)

b

a
| (x− x0)

x− x0 = t · b
a

(t ∈ Z)

x = x0 + t · b
a

a

d

(
t · b

a

)
=

b

a
(y0 − y)

at

d
= y0 − y

y = y0 −
at

d

Follows that

a(x0 +
bt

d
) + b(y0 −

at

d
) = c

ax0 + by0 +
abt

d
− bat

d
= c

ax0 + by0 = c



Chapter 3

Primes

3.1 Fundamental Theorem of Arithmetic

Definition 3.1.1. P ∈ N is prime if

1. P > 1

2. If d ∈ N with d | P then d = 1, P

Definition 3.1.2. If P ∈ N is prime, a, b ∈ Z with P | ab then P | a or P | b.
Theorem 3.1.1. If m ∈ N, m ≥ 2 then m is a product of primes.

m = P1P2 . . . Pt

And this is unique up to order of factors.

Lemma 3.1.1. If P ∈ N is prime, a1, . . . , am ∈ N with P | a1, . . . , am when P | ai for some i.

Proof. Induct on m

Base case. m = 2. True from definition.

Inductive step. Let result be true for m = k. Suppose

P | a1, a2, . . . , ak+1

, then

P | (a1, a2, . . . , ak)ak+1

P | a1, a2, . . . , ak ∨ P | ak+1

∃i. 1 ≤ i ≤ k → P | ai ∨ P | ak+1

Theorem 3.1.2. Let m ∈ N, m ≥ 2. Then m = P1P2 . . . Pt where each Pi is prime, and this is unique up to the
order of factors.

Proof. Let T = {n ∈ N | n ≥ 2 and n is not a product of prime}. To show that T is empty. Suppose not.
Select the a ∈ T smallest element. Then a cannot be prime or a = P1, P1 = a. Then a = bc, b, c > 1.

b > 1 → c < a

c > 1 → b < a

⇒ b, c /∈ T

b = P1P2 . . . Pt, c = Q1Q2 . . . Qs where Pi, Qj are prime

⇒ a /∈ T

⊥
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Uniqueness Suppose
m = P1P2 . . . Pt = Q1Q2 . . . Qs

where Pi, Qj are all prime.

Base case. Result is true for m = 2

Inductive step. Assume it’s true for all integers less than m, then

P1 | m ⇒ P1 | Q1 . . . Qs = m

⇒ ∃j. P1 | Qj

since Qj is prime

⇒ P1 = Qj

m = P1P2 . . . Pt = P1Q1 . . . Qs

⇒ P2 . . . Pt = Q2 . . . Qs < m

By induction t− 1 = s− 1 and Pi = Qi for 2 ≤ i ≤ t after relabeling

Corollary 3.1.1. If m ∈ N, m > 1, then m = P k1
1 . . . P kt

t where P1, . . . , Pt are distinct primes, kj ≥ 1.

Ex 3.1.1. 96 = 2 · 48 = 22 · 24 = 23 · 12 = 24 · 6 = 25 · 3

Theorem 3.1.3 (Pythagorean’s).
√
2 /∈ Q

Proof. Suppose
√
2 = a

b where a, b ∈ Z. We can assume gcd(a, b) = 1. Then

b
√
2 = a

2b2 = a2

2 | a2 ⇒ 2 | a · a ⇒ 2 | a
∃c ∈ Z. a = 2c

2b2 = 4c2

b2 = 2c2

2 | b2 ⇒ 2 | b
⇒ gcd(a, b) 6= 1

⊥

Theorem 3.1.4. Let a, b ∈ N with gcd(a, b) = 1 then the sequence {a, a+ b, a+ 2b, . . . } contains infinitely
many primes.

Definition 3.1.3 (Greatest Integer Function). If x ∈ R, bxc denotes the greatest integer less than or equal to x.

Theorem 3.1.5 (Mill’s Constant). ∃A > 0. s.t. bxn3c is a prime for all n

Proof. There is ua

f = aux
u + au−1x

u−1 + · · ·+ a0 where u ≥ 1

and ai ∈ Z s.t. f(k) is a prime for all k ∈ N



Chapter 4

The Theory of Congruences

4.2 Congruences

Definition 4.2.1 (Congruence). a, b ∈ Z are congrent modulo n for m ∈ N if n | b− a. Written as

a ≡ b (mod n)

By divisibility,

a = qn+ r 0 ≤ r < u ⇐⇒ a ≡ r (mod n)

a ≡ r (mod n) ⇐⇒ r ∈ {0, 1, . . . , n− 1}

Definition 4.2.2 (Complete Set of Residues). a1, a2, . . . , an is a complete set of residues modulo n if they are
congruent to 0, 1, 2, . . . , n− 1 in some order.

Theorem 4.2.1. Let n > 1, a, b, c, d ∈ Z. Then

(a) a ≡ a (mod n)

(b) a ≡ b (mod n) implies
b ≡ a (mod n)

(c) a ≡ b (mod n) and b ≡ a (mod n) implies

a ≡ c (mod n)

(d) a ≡ b (mod n) and c ≡ d (mod n) implies

ac ≡ bd (mod n) and a+ b ≡ c+ d (mod n)

(e) b ≡ c (mod n) implies
ab ≡ ac (mod n)

(f) a ≡ b (mod n) and k ≥ 1 implies
ak ≡ bk (mod n)

11
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Theorem 4.2.2. a, b, c ∈ Z, n ∈ N. If ca ≡ cb (mod n) and gcd(c, n) = 1, then a ≡ b (mod n)

Proof.

ca ≡ cb (mod n)

⇒ n | cb− ca

⇒ n | c(b− a)

⇒ n | b− a

⇒ a ≡ b (mod n)

Corollary 4.2.1. If P is prime and P ∤ n, n ∈ N, then pa ≡ pb (mod n) ⇒ a ≡ b (mod n).

Theorem 4.2.3. Let a, b, c ∈ Z and n ∈ N. If ca ≡ cb (mod n) then a ≡ b
(
mod n

d

)
where d = gcd c, n

Proof.

ca ≡ cb (mod n)

⇒ n | c(b− a)

n =
(n
d

)
d, c =

( c

d

)
d

⇒ n

d
| c
d
(b− a)

⇒
( c

d

)
a ≡

( c

d

)
b
(
mod

(n
d

))
But gcd

(
c
d ,

n
d

)
= 1

⇒ a ≡ b
(
mod

n

d

)

4.3 Binary and Decimal Representations of N
Theorem 4.3.1. Let b > 1, N ∈ N, then we can write

N = ambm + · · ·+ a1b+ a0

where 0 ≤ ai < b and am 6= 0. Also, this representation is unique.

4.4 Linear congruences

Theorem 4.4.1 (Chinese Remainder Theorem). If m1, . . . ,mr ∈ N with gcd(mi,mj) = 1 if i 6= j. Then the
system

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...
x ≡ ar (mod nr)

has a unique solution modulo N = n1n2 . . . nr
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Proof. Let Ni =
N
mi

= n1n2...nr

ni
. The equation Nix ≡ 1 (mod ni) has a solution, xi. Now

Nixi ≡ 1 (mod ni)

Nixi ≡ 0 (mod nj) (if j 6= i since nj | Ni)

Let X = a1N1x1 + · · ·+ arNrxr. then

X ≡ a11 + a20 + . . . ar0 (mod n1)

X ≡ a1 (mod n1)

Similarly, X ≡ a2 (mod n2)

X ≡ ai (mod ni) , i = 1, 2, . . . , r

we have a solution to system, X. Let Y be any other solution,

Y ≡ X ≡ ai (mod ni)

n1 | Y− X

But gcd(ni, nj) = 1 if i 6= j

N | Y− Z

If Z ≡ X (mod N)

Z ≡ X (mod ni)

Z ≡ X ≡ ai (mod ni)

Note that for all solutions,

x = X+ kN, k ∈ Z
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Chapter 5

Fermats’s Theorem

5.2 Fermat’s Little Theorem and Pseudoprimes

Theorem 5.2.1 (Fermat’s Theorem). Let p be a prime and a ∈ Z. Then ap−1 ≡ 1 (mod p).

Corollary 5.2.1. If p is a prime, then ap ≡ a (mod p) for any integer a.

Theorem 5.2.2. If n is an odd pseudoprime, then Mn = 2n − 1 is a larger one.

5.3 Wilson’s Theorem

Theorem 5.3.1. Let p be an odd prime. The equation x2 ≡ −1 (mod p) has a solution iff p ≡ 1 (mod 4).

Proof. Assume p = 4k + 1, k ≥ 1.

(p− 1)! ≡ −1 (mod p)

(p− 1)! = [1, 2, 3, . . . , 2k][(2k + 1) . . . (p− 1)]

p− 2k = (4k + 1)− 2k

= 2k + 1

(p− 1)! = [1, 2, 3, . . . , 2k][(p− 2k) . . . (p− 1)]

≡ (2k)![(p− 2k) . . . (p− 1)] (mod p)

≡ (2k)!(−1)2k(2k)! (mod p)

≡ [(2k)!]2 (mod p)

Conversely, assume x2 ≡ −1 has a solution. Assume a2 ≡ −1 (mod p), a ∈ Z and p ∤ a. By F.L.T,

ap−1 ≡ 1 (mod p)

ap−1 = (a2)
p−1
2

≡ (−1)
p−1
2 (mod p)

≡ 1 (mod p, by F.L.T.)

(−1)
p−1
2 = ±1

−1 ⇒ p | 2, ⊥

(−1)
p−1
2 = 1

p− 1

2
= 2k

p = 4k + 1

15



16 CHAPTER 5. FERMATS’S THEOREM



Chapter 6

Number Theoretic Functions

Definition 6.0.1 (Convolution). Let f, g : N → Z, The convolution of f and g is

f ∗ g : N −→ Z

f ∗ g = a 7−→
∑
d|a

f(d)g
(a
d

)
Definition 6.0.2.

f : N −→ R
I(u) = u

λ(u) = 1

ϵ(u) =

{
1 u = 1

0 u > 1

τ(u) = # of divisors of u

σ(u) =
∑
d|u

d

µ(u) : N −→ R

=

{
(−1)r u = P1P2 . . . Pr where P1, . . . , Pr are distinct primes
0 otherwise

Definition 6.0.3. f : N → R is multiplicative if f(ab) = f(a)f(b) where gcd(a, b) = 1.

Lemma 6.0.1. If f : N → R then f ∗ ϵ = f = ϵ ∗ f

Lemma 6.0.2. If f, g : N → R then f ∗ g = f = g ∗ f

Lemma 6.0.3. µ is multiplicative.

Theorem 6.0.1. Let f, g, h : N → R, then

• f ∗ g = g ∗ g

• ϵ ∗ f = f ∗ ϵ = f

• f ∗ (g + h) = f ∗ g + g ∗ h

• (f ∗ g) ∗ h = f ∗ (g ∗ h)

• (f ∗ σ)(u) =
∑

d|u f(d) = F (u)

17
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Theorem 6.0.2. Let f, g : N → R be multiplicative. Then f ∗ g is multiplicative.

Ex 6.0.1. Show that µ ∗ τ = λ

Proof. Because µ, τ are multiplicative, we have µ ∗ τ is multiplicative. And multiplicative function is deter-
minied by value at pk where p is prime and k ≥ 0.

λ(pk) = 1

(µ ∗ τ)(pk) =
k∑

i=0

µ(pi)τ(pk−i)

= µ(1)τ(pk) + µ(p)τ(pk−1) + 0 + · · ·+ 0

= 1(k + 1) + (−1)k

= 1



Chapter 7

Euler’s Generalization of Fermat’s
Theorem

7.4 Properties of Phi Function

Theorem 7.4.1. If m ∈ N then n =
∑

d|n ϕ(d)

Proof. (1) Let Sd = {a | 1 ≤ a ≤ n, gcd(a, n) = d}, then {1, 2, . . . , n} =
∪

d|u Sd, which is a disjoint union.

|n| =
∑
d|u

|Sd|

a ∈ Sd =⇒ d | a, a = dl

gcd(a, n) = d ⇐⇒ gcd
(a
d
,
n

d

)
= 1

⇐⇒ gcd
(
l,
n

d

)
= 1

|Sd| = ϕ
(n
d

)
n =

∑
d|n

|Sd|

=
∑
d|n

ϕ
(n
d

)
=

∑
d|n

ϕ(d)

19
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Proof. (2) ∑
d|u

ϕ(d) =
∑
d|u

ϕ(d)λ
(u
d

)
= (ϕ ∗ λ)(u)

Both are multiplicative. Suppose to show that (ϕ ∗ λ)(pk) = pk, where p is prime and k ≥ 0.

• k = 0 (ϕ ∗ λ)(1) = ϕ(1)λ(1) = 1

• k ≥ 1

(ϕ ∗ λ)(pk) =
k∑

i=0

ϕ(pi)λ(pk−i)

= 1 + (p− 1) + (p2 − p) + · · ·+ (pk − pk−1)

= pk

Theorem 7.4.2.
xn − 1 =

∏
d|n

Φd(x)

where Φd(x) is a monic polynomial with coefficients in Z that does not factor over Q and degΦd(x) = ϕ(d).



Chapter 8

Primitive Roots and Indices

8.1 The Order of an integer mod n

Definition 8.1.1 (Order). If gcd(a, n) = 1 order of mod n is the smallest k ≥ 1 s.t. ak ≡ 1 (mod n)

Theorem 8.1.1. Order of a devisor of ϕ(n).

Theorem 8.1.2. If d | ϕ(p) = p− 1 and xd − 1 ≡ 0 (mod p), there’s exactly d incongruent.

Theorem 8.1.3 (Lagrange). Let f(x) = anx
n + · · ·+ a1x+ a0 be a polynomial with an 6≡ 0 (mod p) where p

is a prime, ai ∈ Z. Then the congruence equation f(x) ≡ 0 (mod p) has at most n incongruent solutions.

Proof. If n = 1 we have a1x + a0 ≡ 0 (mod p), then g(a, p) = 1, implies there is a unique solution mod p.
Now assume the result is true for n− 1 and a ∈ Z is one solution of f(x) ≡ 0 (mod p). Divide f(x) by x− a

f(x) = (x− a)q(x) + r, r ∈ Z
f(a) ≡ 0 (mod p)

r ≡ 0 (mod p)

If c is any solution with c 6≡ a (mod p)

0 ≡ f(c) (mod p)

≡ (c− a)q(c) + r (mod p)

≡ (c− a)q(c) (mod p)

Since gcd(p, c− a) = 1

q(c) ≡ 0 (mod p)

q(x) = anx
n−1 + lower degree

By induction

q(x) ≡ 0 (mod p)

has at most n− 1 incongruent solutions mod p, then the equation has at most n incongruent solutions mod
p.

21
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Lemma 8.1.1. Let f(x), g(x) be polynomials with integers coefficients. If a is a solution to f(x)g(x) ≡ 0
(mod p), then either f(a) ≡ 0 (mod p) or g(a) ≡ 0 (mod p).

Proof.

f(a)g(a) ≡ 0 (mod p)

⇒ p | f(a)g(a)
⇒ p | f(a) ∨ p | g(a)
⇒ f(a) ≡ 0 (mod p) ∨ g(a) ≡ 0 (mod p)

Corollary 8.1.1. Assume p is prime and d | ϕ(p) = p− 1, then xα − 1 has mostly d incongruent solutions mod
p.

Theorem 8.1.4. Assume p is a prime and d | p− 1 = ϕ(p), then there are precisely ϕ(d) incongruent modulo p
integers of order d modulo p.

Proof. Let α(d) be the number of noncongruent integers of order d mod p. Every integer 1, 2, . . . , p − 1 has
an order mod p, entails that

p− 1 =

α(d)∑
d|p−1

By Lagrange’s,

p− 1 =

ϕ(d)∑
d|p−1

If we have ∀d | p− 1. α(d) ≤ ϕ(d) we must have ∀d | p− 1. α(d) = ϕ(d).

Theorem 8.1.5. If p is a prime, then 2p has a prime root.

Proof. If p is an odd prime, ϕ(2p) = ϕ(2)ϕ(p) = p − 1. We can find an odd primitive root of p. If a is prime
root of p then a+p is a prime root of p. Either a or a+p is odd. We can assume a is odd, then gcd(a, 2p) = 1.
If a has order h mod 2p, then

2p | ah − 1

p | ah − 1

h ≥ p− 1 = ϕ(2p)

a is a prime root of 2p

Lemma 8.1.2. If p is an prime, p ∤ a, a odd, then

(a/p) = (−1)
∑ p−1

2
k=1 [

ka
p ]

Theorem 8.1.6. If p 6= q are odd primes, then

(p/q)(q/p) = (−1)(
p−1
2

q−1
2 )

Proof. Look at

S =

{
(x, y) ∈ R | 1 ≤ x ≤ p− 1

2
, 1 ≤ y ≤ q − 1

2

}
with interger coordinates, |S| =

(
p−1
2

) (
q−1
2

)
.
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Claim. None of the points in S are on the line y = q
px.

Proof. Suppose it does

m =
p

q
u

pm = qu

p | qu ⇒ p | u

But 1 ≤u ≤ p− 1

2
⊥

Now let S = T1 ∪ T2 where T1 are points in S lower than the line y = q
px and T2 are points in S above.

Then

|T1| =

p−1
2∑

k=1

[
kq

p

]
and

(−1)(
p−1
2 )( q−1

2 ) = (−1)|S|

= (−1)|T1|+|T2|

= (−1)|T1|(−1)|T2|

= (−1)
∑ p−1

2
k=1 [

kq
p ](−1)

∑ q−1
2

l=1 [ lpq ]

= (q/p)(p/q)

Corollary 8.1.2. Assume p 6= q are odd primes. Then

(p/q) = (q/p) if

{
p ≡ 1 (mod 4)

q ≡ 1 (mod 4)

(p/q) = −(q/p) if p ≡ q ≡ 3 (mod 4)

Ex 8.1.1. For what primes P > 3 is (3/p) = 1?

Answer. Suppose P ≡ 1 (mod 4)

(3/p) = (p/3) = 1 if p ≡ 1 (mod 3)

by C.R.T, need P ≡ 1 (mod 1) 2. If P ≡ 3 (mod 4), we have (3/p) = −(p/3), means p ≡ 2 (mod 3). By C.R.T,
P ≡ 11 ≡ −1 (mod 12), gives that

(3/p) =

{
1 if p ≡ ±1 (mod 12)

−1 otherwise

Ex 8.1.2. Compute (61/79)

Answer.

(61/79) = (79/61)

= (18/61)

= (3
2·2/61)

= (3
2
/61)(2/61)

= −1


