Introduction to Topology

MAT 661

George Miao gm@miao.dev

Contents

1. Basic Point Set Topology	3
1.1. Real	3
1.2. Metric Spaces	
1.3. Topological spaces	7
1.4. Summary	9
1.5. Bases for topologies	
1.6. Continuity	
1.7. Closure and Interior	
1.8. Homeomorphisms	
1.9. Linear and affine maps	
1.10. Topological Properties	. 22
1.10.1. Separation Properties	
1.11. Compactness	
1.12. Compactness in $\mathbb R$	
1.13. Product Topology and compactness in \mathbb{R}^n	
1.14. Lebesgue number lemma	
1.15. Connectness	
1.16. Connectness in $\mathbb R$	
1.16.1. Application	
1.17. Path Connectness	
1.18. Construction of quotient spaces	
1.19. Disjoint Union and gluing	
1.20. Simply connected space	
1.21. Jordan Curve Theorem and Schoenflies Theorem	
1.21.1. Situation in higher dimensions	
1.22. Local flatness and collar neighborhoods	
2. The classification of surfaces	
2.1. Manifolds	
2.2. Invariance of domain	
2.3. Surfaces with boundary	
2.4. Isotopies	
2.4.1. Homeomorphisms of $I = [0, 1]$	
2.4.2. Homeomorphism of S^1	
2.5. Handle Slides	
2.6. Orientations	
3. The Fundamental Group	63
3.1. Homotopies	
3.2. Fundamental Group of S^1	
3.3. Dependence on the base point	. 74
3.4. Homotopy invariance of Π.	75

Contents

3.5. Degree	76
3.5.1. Applications	
3.6. Seifert-van Kampen Theorem	
3.7. Fundatmental groups of surfaces	
3.7.1. Surfaces with $\partial M \neq \emptyset$	
3.7.2. Surface without boundary	

Chapter 1

Basic Point Set Topology

1.1 Real

Definition (Open balls). $x \in \mathbb{R}^n, r > 0, B(x,r) := \{y \in \mathbb{R}^n \mid d(x,y) < r\}$

Definition (Open set). $u \subseteq \mathbb{R}^n$ is open if every $x \in u$ an **interior point** of u, meaning $\exists r > 0$. $B(x,r) \subseteq u$.

Remark. r-balls are open.

Theorem (Continuity). Let $f: \mathbb{R}^k \to \mathbb{R}^l$. f is continuous iff for every open set $v \subseteq R^l$, the preimage $f^{-1}(v)$ is open in \mathbb{R}^l .

proof.

- "⇒" skipped
- " \Leftarrow " Suppose preimages of opensets are open, and let $x \in \mathbb{R}^k$ and $\varepsilon > 0$. Then $B(f(x), \varepsilon)$ is open in \mathbb{R}^l , so by assumption,

$$f^{-1}(B(f(x),\varepsilon))$$
 is open in \mathbb{R}^k

- $\Rightarrow x$ is an interior point of $f^{-1}(B(f(x), \varepsilon))$
- $\Rightarrow \exists \delta > 0. \ B(x, \delta) \subseteq f^{-1}(B(f(x), \varepsilon))$
- $\Rightarrow \varepsilon$ - δ condition holds at x
- $\Rightarrow f$ is continuous at x
- $\Rightarrow f$ is continuous on all of \mathbb{R}^k

Definition. $X \subseteq \mathbb{R}^k$, $Y \subseteq \mathbb{R}^l$ subsets, $f: X \to Y$. f is continuous at $x \in X$ if

$$\forall \varepsilon > 0. \ \exists \delta > 0. \ f(B_X(x,\delta)) \subseteq B_Y(f(x),\varepsilon)$$

where $B_X(x,\delta) := B(x,\delta) \cap X$ and $B_Y(y,\varepsilon) := B(y,\varepsilon) \cap Y$.

Definition . $X\subseteq \mathbb{R}^n$, $U\subseteq X$ subset. U is **open in** X if there exists an open set $U'\subseteq \mathbb{R}^n$ such that

$$U=U'\cap X$$

Example. Let

$$X = [0, 2] \times [0, 2]$$

$$U = \{(x_1, x_2) \in X \mid x_1^2 + x_2^2 < 1\}$$

U is open in \mathbb{R}^2 because $U = B((0,0),2) \cap X$.

Example. For every $X \subseteq \mathbb{R}^n$, X is open in X because $X = X \cap \mathbb{R}^n$. But in geenral, $X \subseteq \mathbb{R}^n$ is **not** open in \mathbb{R}^n .

Theorem. Let $X \subseteq \mathbb{R}^k$, $Y \subseteq \mathbb{R}^l$, $f: X \to Y$. f is continuous iff for every $V \subseteq Y$ that's open in Y, the preimage $f^{-1}(V)$ is open in X.

1.2 Metric Spaces

Definition. X any set. A distance function or metric on X is a map

$$d: X \times X \to [0, \inf)$$

such that

(M1) $d(x,y) = 0 \iff x = y$

(M2) d(x,y) = d(y,x)

(M3) $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

Definition (Metric space). (X, d) is a metric space if d is a metric on X.

Example. (\mathbb{R}^n, d) is a metric where d is the Euclidean distance, i.e. d(x, y) = ||x - y||.

Example. (\mathbb{R}^n, d') where d' = 2d is also a metric space.

Example (Discrete metric). X any set, $d = d_{\text{discret}}$ where

$$d_{\mathrm{discrete}(x,y)} = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

 $(X, d_{\rm discrete})$ is called the discrete metric space.

Example. (X, d) any metric space, $Y \subseteq X$ subset, we can restrict d to a map

$$d|_{Y}: Y \times Y \to [0, \inf]$$

then $(Y, d|_Y)$ is a metric space, called a **(metric) subspace** of (x, d) and $d|_Y$ called **induced metric**.

Example. S is a subspace in $(\mathbb{R}^3, d_{\text{Eucl}})$, then $(S, d_{\text{Eucl}}|_S)$ is a metric space.

Example. Let V be a real vector space. A norm on V is a map $\|.\|:V\to[0,\inf)$ such that

- (N1) $||x|| = 0 \iff x = 0$
- (N2) ||cx|| = |c| ||x||

(N3)
$$||x + y|| \le ||x|| + ||y||$$

e.g., on $V = \mathbb{R}^2$,

- Euclidean norm: $||(x_1, x_2)|| = \sqrt{x_1^2 + x_2^2}$
- Max norm: $||(x_1, x_2)|| = \max(|x_1|, |x_2|)$
- Sum norm: $||(x_1, x_2)|| = |x_1| + |x_2|$

Easy to see: If $\|.\|$ is a norm on V, then $d(x,y) = \|x-y\|$ is a metric on V, meaning any normed vector space is a metric space.

Definition(Open balls). Let (X, d) be metric space, $x \in X$, r > 0. The **open** d-r-ball centered at x is the set

$$B_d(x,r) := \{ y \in X \mid d(x,y) < r \}$$

Definition (Open set). Let (X, d) be metric space. A subset $U \subseteq X$ is **open** if every $x \in U$ is an **interior point** of U, meaning

$$\exists r > 0. \ B_d(x,r) \subseteq U$$

Definition (Continuity). Let (X,d), (Y,d') be metric spaces, $f:X\to Y$. f is continuous at $x\in X$ if

$$\forall \varepsilon > 0. \ \exists \delta > 0. \ f(B_d(x, \delta)) \subseteq B_{d'}(f(x), \varepsilon)$$

Theorem. Let (X,d), (Y,d') be metric spaces, $f:X\to Y$. f is continuous iff the preimage of d'-open set $V\subseteq Y$ is d-open in X.

Theorem. Let (X, d) be metic space

- 1. \emptyset , X are open (in X)
- 2. the union of any collection of open sets in X is open
- 3. the intersection of any **finite** collection of open sets in *X* is open

proof.

- 1. \varnothing is open because it contains no non-interior points. X is open because **every** $B_d(x,r)$ is contained in X.
- 2. Suppose the sets $U_i, i \in I$ are open in X, and $x \in \bigcup U_i$, then $\exists i \in I. \ x \in U_i$, meaning x is an interior point of U_i for some i. So $\exists r > 0$. $B_d(x,r) \subseteq U_i \subseteq \bigcup U_i$.

3. Suppose $U_1,...,U_n$ are open subsets of X. Let

$$x\in \bigcap_{i\in [1,n]} U_i$$

Means $\forall i \in [1, n]. \ x \in U_i$, then

$$\forall r \in [i, n]. \ \exists r_1, ..., r_n > 0. \ B_{d(x, r_i)} \subseteq U_i$$

Now define
$$r\coloneqq\min\{r_1,...,r_n\}>0$$

$$\begin{split} &\Longrightarrow \forall i \in [1,n]. \ B_{d(x,r)} \subseteq B_{d(x,r_i)} \subseteq U_i \\ &\Longrightarrow B_{d(x,r)} \subseteq U_i \\ &\Longrightarrow B_{d(x,r)} \subseteq U_1 \cap \ldots \cap U_n \\ &\Longrightarrow x \text{ is an interior point of } U_1 \cap \ldots \cap U_n \\ &\Longrightarrow \forall x \in \bigcap_{i \in [1,n]} U_i. \ x \text{ interior} \end{split}$$

$$\Longrightarrow \bigcap_{i \in [1,n]} U_i \text{ is open}$$

1.3 Topological spaces

Definition. Let X be a set. A **topology** on a set X is a collection $\mathcal{T} \subseteq \mathcal{P}(X)$ of subsets $U \subseteq X$ called \mathcal{T} -open subsets such that

- (T1) $\emptyset, X \in \mathcal{T}$
- (T2) any union of members of $\mathcal T$ belongs to $\mathcal T$
- (T3) any finite intersection of members of \mathcal{T} belongs to \mathcal{T}

In this case, (X, \mathcal{T}) is called a **topological space**.

Example (Every metric space is a top. space). Let (X, d) be a metric space. Then

$$\mathcal{T}_d := \{d \text{-open subsets of } X\}$$

is a topology on X.

Remark. Different metrics on X may give rise to different topologies on X.

Example (Discrete top. space). Let X be any set. Then

$$\mathcal{T} := \mathcal{P}(X) = \text{Powerset of } X$$

is a topology on X, called the **discrete topology**, induced by the discrete metric. X with the discrete topology is called the **discrete topological space**.

Example (Indiscrete/trivial top. space). Let X be any set. Then

$$\mathcal{T} := \{\emptyset, X\}$$

is a topology on *X*, called the **indiscrete topology**.

Definition. An open set that contains a point x is called an **open neighborhood** of x.

Definition (Hausdorff, or T_2). A topological space is called **Hausdorff** if for any $x, y \in X$, $x \neq y$, there exist **disjoint** open sets $U, V \subseteq X$ such that

$$U \ni x \text{ and } V \ni y$$

Theorem. Every metric space (X, d) is Hausdorff.

proof. Let $x,y\subseteq X, x\neq y$. Then r:=d(x,y)>0. Now define $U:=B_d(x,\frac{r}{2}), V:=B_d(y,\frac{r}{2})$, meaning U,V are disjoint open neighborhood of x,y, thus X is Hausdorff. \square

Theorem. If *X* has greater than one element, then the trivial topology on *X* is **not** Hausdorff.

proof. In the trivial topology, the only open neighborhood of any point $x \in X$ is X itself. So for any $x, y \in X$, $x \neq y$, there are no disjoint open sets $U, V \subseteq X$ such that $U \ni x$ and $V \ni y$.

Example. $X = \{a, b\}, a \neq b$. Possible topologies:

- $\mathcal{T}_1 = \{\emptyset, X\}$: trivial
- $\mathcal{T}_2 = \{\emptyset, \{a\}, X\}$
- $\mathcal{T}_2 = \{\emptyset, \{b\}, X\}$
- $\mathcal{T}_3 = \{\emptyset, \{a\}, \{b\}, X\}$: discrete

Example. $X = \mathbb{R}$. Define:

 $\mathcal{T} = \{ \text{unions of half-open intervals of the form } [a, b) \text{ for all } a < b \in \mathbb{R} \}$

 \mathcal{T} is a topology on \mathbb{R} , called the lower **limit topology** on \mathbb{R} .

Notation: $\mathbb{R}_{LL} = (\mathcal{T}, \mathbb{R})$

Question. How is \mathbb{R}_{LL} related to \mathbb{R} with the usual topology (i.e. the topology induced by the Euclidean metric)?

Answer: They are not the same. [a,b) is open in \mathbb{R}_{LL} but not with respect to the standard topology on \mathbb{R} .

Theorem. Every d-open subsets $U \subseteq \mathbb{R}$ is always open in \mathbb{R}_{IL} .

proof. Suppose $U\subseteq\mathbb{R}$ is d-open, and let $x\in U$, then x is an interior point of U with respect to d. So $\exists r>0$. $B_d(x,r)\subseteq U$ and $U=\bigcup_{x\in U}[x,x+r)$, U is open in \mathbb{R}_{LL} .

Definition. X any set, $\mathcal{T}, \mathcal{T}'$ topologies on X.

- \mathcal{T} is **finer** than \mathcal{T}' if $\mathcal{T} \supseteq \mathcal{T}'$
- \mathcal{T} is **coarser** than \mathcal{T}' if $\mathcal{T} \subseteq \mathcal{T}'$

Remark. Lower limit topology on \mathbb{R} , \mathbb{R}_{LL} , is finer than the standard topology on \mathbb{R} .

Example. (X, \mathcal{T}) top. space, $Y \subseteq X$.

$$\mathcal{T}|_{V} \coloneqq \{U \cap Y \mid U \in \mathcal{T}\}$$

is a topology on Y, called the **subspace topology induced** by \mathcal{T} .

Definition (subspace). $(Y, \mathcal{T}|_Y)$ is called a **subspace** of (X, \mathcal{T}) .

Theorem. If \mathcal{T} is induced by a metric d on X, then the subspace topology $\mathcal{T}|_{Y}$ on Y is induced by the metric $d|_{Y}$.

1.4 Summary

Spaces in \mathbb{R}^n with $d = d_{\text{Eucl}}$

- \Longrightarrow Subspaces of \mathbb{R}^n
- \Longrightarrow General metric spaces
- ⇒ General topological spaces

Question. Is every metric space equivalent (as in homeomorphic) to a subspace of \mathbb{R}^n for some $0 \le n < \infty$?

Answer: No. We will see that any subspaces of \mathbb{R}^n is 2nd countable, but e.g. $(\mathbb{R}, d_{\text{discr.}})$ is not 2nd countables.

Fact (Nagata-Smirnov). For all metric space (X,d), there exists a set J (very big, possibly infinite) such that (X,d) is homeomorphic to a subspace of (\mathbb{R}^K,d_u) .

Here:

$$\begin{split} \mathbb{R}^J &\coloneqq \{f: J \to \mathbb{R}\} \\ d_u &\coloneqq \text{uniform metric on } \mathbb{R}^J \\ d_{u(f,g)} &\coloneqq \sup\{\min\{1, d(f(x), g(x))\} \mid x \in J\} \end{split}$$

1.5 Bases for topologies

Definition. Let X be set, a collection $\mathcal{B} \subseteq \mathcal{P}(X)$ is a base for topology on X if

- (1) $X = \bigcup_{B \in \mathcal{B}} B$
- (2) If $B, B' \in \mathcal{B}$, then $B \cap B'$ is a union of members of \mathcal{B} .

Given such a base $\mathcal{B} \subseteq \mathcal{P}(X)$, we can define

$$\mathcal{T}_{\mathcal{B}} \coloneqq \{\text{Unions of members of } \mathcal{B}\}\$$

<u>Can check</u>: If \mathcal{B} satisfies (1) and (2), then $\mathcal{T}_{\mathcal{B}}$ is a topology on X.

Remark. $\mathcal{T}_{\mathcal{B}}$ is the **coarsest** topology on X for which all members of \mathcal{B} are open. Conversely, if a topology \mathcal{T} on X is already given, then a base for \mathcal{T} is collection $\mathcal{B} \subseteq \mathcal{T}$ such that every $U \in \mathcal{T}$ is a union of members of \mathcal{B} .

Remark. Every top. space (X, \mathcal{T}) has a base, namely $\mathcal{B} = \mathcal{T}$.

Example . $X = \mathbb{R}$, $\mathcal{B} = \{(a,b) \mid a < b\}$. In this case, $\mathcal{T}_{\mathcal{B}}$ is the usual topology given by d(x,y) = |x,y|.

Example. Let (X, d) be a metric space, $\mathcal{B} := \{B_d(x, r) \mid x \in X, r > 0\}.$

Definition (2nd countable). (X, \mathcal{T}) is **2nd countable** if it has a **countable** base.

Example. $(\mathbb{R}^n, d = d_{\text{Eucl}})$ is 2nd countable.

$$\mathcal{B} := \{ B_d(x, r) \mid x \in \mathbb{Q}^n, r \in \mathbb{Q}, r > 0 \}$$

is a countable base.

Definition (Neighborhood base). Let (X,\mathcal{T}) be top. space. A **neighborhood base** at $x\in X$ is a collection $\mathcal{N}_x\subseteq \mathcal{T}$ of \mathcal{T} -open neighborhoods of x such that for every \mathcal{T} -open neighborhood N of x, there exists $N'\in \mathcal{N}_x$ such that $N'\subseteq N$.

Definition (1st countable). (X, \mathcal{T}) is **1st countable** if every $x \in X$ has a countable neighborhood base.

Example. Every metric space (X, d) is 1st countable.

proof. Given $x \in X$, let

$$\mathcal{N}_r := \{ B_d(x, r) \mid r \in \mathbb{Q}, r > 0 \}$$

and this is a countable neighborhood base at x.

Theorem. 2nd countable implies 1st countable.

proof. Suppose (X, \mathcal{T}) has a countable base \mathcal{B} . Let $x \in X$, then

$$\mathcal{N}_x \coloneqq \{B \in \mathcal{B} \mid x \in B\}$$

is a countable neighborhood base at x.

Caution. The converse is not true.

Example. $(\mathbb{R}, d = d_{\text{disc}})$ is 1st countable since $\mathcal{N}_x = \{\{x\}\}$ is a countable neighborhood base at x, but it is not 2nd countable.

Theorem. If X is an uncountable space with the discrete topology then X is not 2nd countable.

proof. X uncountable & discrete

- \Rightarrow Evert set in X is open
- \Rightarrow Evert 1-point set in X is open
- \Rightarrow If \mathcal{B} is any base for X, then every 1-point set must be union of members of \mathcal{B}
- \Rightarrow Every 1-point set must be a member of \mathcal{B}
- $\Rightarrow \mathcal{B}$ contains uncountably many members
- $\Rightarrow X$ is not 2nd countable

Example. $X = \mathbb{R}_{\mathrm{LL}}$ (\mathbb{R} with lower limit topology) is 1st countable but not 2nd countable.

proof. $\mathcal{N}_x=\{[x,x+r)\mid n\in\mathbb{Q}^+\}$ is a countable neighborhood base at x, so X is 1st countable. But let \mathcal{B} be any base for \mathbb{R}_{LL} . For a point $x\in\mathbb{R}$, choose a base set $B_x\in\mathcal{B}$ containing x such that $B_x\subseteq[x,x+1)$. Consider the map

$$\mathbb{R} \longrightarrow \mathcal{B}$$
$$x \longmapsto B_x$$

It's easy to see this map is injective because $x=\inf B_x$, implies that $|\mathcal{B}|\geq |\mathbb{R}|$, so \mathcal{B} is uncountable and \mathbb{R}_{LL} is not 2nd countable.

¹May requires Axiom of Choice

1.6 Continuity

Definition(Continuity). Let (X, \mathcal{T}) , (Y, \mathcal{T}') be top. spaces, $f: X \to Y$. f is **continuous** at $x \in X$ if the preimage $f^{-1}(v)$ of every \mathcal{T}' -open set V is \mathcal{T} -open. So a continuous map $f: X \to Y$ induces a map

$$\mathcal{T} \longleftarrow \mathcal{T}'$$
$$f'(V) \longleftarrow V$$

Example. Let X be any set, $id: X \to X$ be the identity map, and \mathcal{T} , \mathcal{T}' be two topologies on X. When is $id: (X,\mathcal{T}) \to (X,\mathcal{T}')$ continuous?

 $id:(X,\mathcal{T})\to (X,\mathcal{T}')$ is continuous

- \iff the preimage under id of each \mathcal{T}' -open set is \mathcal{T} open
- \iff each \mathcal{T}' -open set is also \mathcal{T} -open
- $\iff \mathcal{T}$ is finer than \mathcal{T}'

Remark. The identity map of a top. space (X, \mathcal{T}) is always continuous.

Example. Let (X, \mathcal{T}) , (Y, \mathcal{T}') top. spaces., $y_0 \in Y$, $f: X \to Y$ the constant map, i.e., $\forall x \in X$. $f(x) := y_0$. Then f is continuous.

proof. Let $V \subseteq Y$ be any subsets, then

$$f^{-1}(V) = \begin{cases} X \text{ if } y_0 \in V \\ \varnothing \text{ if } y_0 \neq V \end{cases}$$

then the preimage of any \mathcal{T}' -open set is \mathcal{T} -open, f is continuous.

Remark. Constant maps are always continuous. Furthermore, if X contains only one point, then any map $f: X \to Y$ is continuous.

Definition (Closed sets). Let (X, \mathcal{T}) top. space, $A \subseteq X$ is **closed** if $X - A = X \setminus A$ is open.

Example. $X = \mathbb{R}$, A = [0, 1]. A is closed in \mathbb{R} because

$$R - [0,1] = (-\infty,0) \cup (1,\infty)$$

Caution. There exist sets that are neither open nor closed. And there exist sets that are both closed and open called **clopen**. For example, $[0,1)\subseteq\mathbb{R}_{\mathrm{LL}}$ is clopen or in any space X, the sets \emptyset,X are clopen.

Definition. X is **connected** if the only clopen subsets of X are \emptyset , X.

Theorem. $f: X \to Y$ is continuous iff the preimage of every closed set in Y is closed in X.

proof. idea: If $A \subseteq Y$ is any subset, then

$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

so taking complements is "compatible" with taking preimages & exchanges open and closed sets. \Box

Theorem (Properties of closed set). (X,\mathcal{T}) be top. space. $Y\subseteq X$ subspace equipped with the subspace topology $\mathcal{T}|_Y:=\{U\cap Y\mid U \text{ open in } X\}.$ $B\subseteq Y$ is closed in $\mathcal{T}|_Y$ iff there exists a closed set $A\subseteq X$ such that

$$B = A \cap Y$$

 $\begin{array}{l} \textit{proof.} \quad \text{Suppose } B \subseteq Y \text{ is closed in } \mathcal{T}|_Y, \\ \Rightarrow V \coloneqq Y \setminus B \text{ is open in } \mathcal{T}|_Y \\ \Rightarrow V = U \cap Y \text{ for an open set } U \subseteq X \\ \Rightarrow B = Y \setminus V = Y \setminus (U \wedge Y) \\ &= Y \setminus U \\ &= Y \cap (X \setminus U) \\ &= Y \cap A \\ &= A \cap Y \end{array}$

Conversely the proof is similar.

Remark.

- 1. If $Y \subseteq X$ is open in X and $V \subseteq Y$ is open in Y, then V is open in X.
- 2. If $Y \subseteq X$ is closed in X and and $B \subseteq Y$ is closed in $\mathcal{T}|_{Y}$, then B is closed in X.

Theorem. (X, \mathcal{T}) top. space.

- 1. \emptyset , X are closed
- 2. the intersection of any collection of closed sets is closed
- 3. the union of any finite collection of closed sets is closed

proof.

- 1. \emptyset is closed because $X \emptyset = X$ is open, and X is closed because $X X = \emptyset$ is open.
- 2. Let $A_i \subseteq X$ be closed for $i \in I$, then A_i are open, $\bigcup (X \setminus A_i)$ is open, by de Morgan's law, $X \setminus \bigcap A_i$ is open, so $\bigcap A_i$ is closed.
- 3. Similar

Caution. Infinite unions of closed sets are in general not closed.

Basic Point Set Topology

Example. Take (\mathbb{R},d) , $A_i = \left[0,1-\frac{1}{i}\right]$ for i=1,2,3,..., then

$$A_i = [0, 1)$$

which is **not** closed.

Example. *X* be any set, let $\mathcal{F} = \{U \subseteq X \mid X \setminus U \text{ is finite}\} \cup \{\emptyset, X\}$ defines a topology on *X* called the **cofinite topology** or **finite-complement topology**.

Theorem. In a Hausdorff space, every 1-point set is closed.

proof. Let X be Hausdorff, $x \in X$. For each $y \in X - \{x\}$, there exists disjoint open neighborhoods $U_x \ni x$ and $V_y \ni y$, then

$$X-\{x\}=\bigcup_{y\in X-\{x\}}V_y$$

is open, so $X - \{x\}$ is closed, meaning $\{x\}$ is closed.

Corollary. In a Hausdorff space, every finite set is closed.

Corollary. if *X* is itself **finite**, then **every** subset of *X* is closed, so *X* is discrete.

1.7 Closure and Interior

Definition (Closure). The **closure** of $A \subseteq X$ is the set

$$\overline{A} \coloneqq \bigcap \{ \text{closed subsets } C \subseteq X \mid A \subseteq C \}$$

 \overline{A} is the smallest closed subset of X that contains $A \subseteq X$.

Definition (Interior). The **interior** of $A \subseteq X$ is the set

int
$$A := \bigcup \{ \text{open subsets } U \subseteq X \mid U \subseteq A \}$$

int *A* is the largest open subset of *X* that is contained in *A*.

Definition (Boundary). The **boundary** of $A \subseteq X$ is the set

$$\operatorname{Bd} A \coloneqq \overline{A} \cap \overline{X \setminus A}$$

Remark. By de Morgan,

$$X \setminus \overline{A} = \operatorname{int}(X \setminus A)$$
$$\overline{X \setminus A} = X \setminus \operatorname{int}(A)$$

SO

$$\operatorname{Bd} A = \overline{A} \cap (X \setminus \operatorname{int}(A))$$
$$= \overline{A} \setminus \operatorname{int}(A)$$

Remark. By definition, int $A \subseteq A \subseteq \overline{A}$ so A closed iff $A = \overline{A}$, and A open iff $A = \operatorname{int}(A)$. A is clopen if $A = \operatorname{int}(A) = \overline{A}$ and $\operatorname{Bd} A = \emptyset$.

Theorem. X top. space, $A \subseteq X$, $x \in X$.

- 1. $x \in \overline{X}$ iff every open neighborhood of x intersects A.
- 2. $x \in \text{int } A$ iff there exists an open neighborhood of x that is contained in A.
- 3. $x \in \operatorname{Bd} A$ iff every open neighborhood of x intersects both A and $X \setminus A$.

proof.

- 1. $x \notin \overline{A} \Longleftrightarrow x \in X \setminus \overline{A} = \operatorname{int}(X \setminus A)$
 - $\iff \exists$ an open neighborhood of x that's in $X \setminus A$.
 - $\Longleftrightarrow \exists$ an open neighborhood of $\ x$ that does not intersect A.
- 2. Follows from the definition of int A
- 3. Follows from 1. and from

$$\operatorname{Bd} A = \overline{A} \cap \overline{X \setminus A}$$

Example. $X = \mathbb{R}$ with standard top. A = [0, 1], int A = (0, 1), $\operatorname{Bd} A = \overline{A} \cap \operatorname{int} A = \{0, 1\}$.

Example . $X = \mathbb{R}^2$ with standard top. $A = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 1\} = B((0, 0), 1)$. A open because int A = A.

$$\begin{split} \overline{A} &= \left\{ (x_1, x_2) \in \mathbb{R}^2 \ | \ x_1^2 + x_2^2 \leq 1 \right\} \\ \operatorname{Bd} A &= \left\{ (x_1, x_2) \in \mathbb{R}^2 \ | \ x_1^2 + x_2^2 = 1 \right\} \\ &= S^1 = \text{unit circle} \end{split}$$

Fact. In any metric, $\overline{B_{d(x,r)}}\subseteq \{y\in X\mid d(x,y)\leq r\}.$

Theorem. X, Y be any top. space, $f: X \to Y$ is continuous iff

$$\forall A \subseteq X. \ f(\overline{A}) \subseteq \overline{f(A)}$$

A continuous map sends points that are "extremely close" to A to points that are extremely close to f(A).

Definition(Restriction). If $f: X \to Y$ is any map and $A \subseteq X$, then $f|_A$ denotes the **restriction**

$$f|_A:A\to Y=f\circ i$$

where

$$i:A\longrightarrow X\\ x\longmapsto x$$

Fact. $i: A \to X$ is continuous with respect to the subspace topology

Lemma (Piecing lemma). Let $f: X \to Y$ is any map. Suppose $X = A \cup B$ where $A, B \subseteq X$ are closed. If $f|_A$ and $f|_B$ are continuous, then f is continuous.

proof. Need to show that the preimage of each closed set in Y is closed in X. Let $C \subseteq Y$ be closed. Then

$$\begin{split} f^{-1}(C) &= f^{-1}(C) \cap (A \cup B) \\ &= \left(f^{-1}(C) \cap A \right) \cup \left(f^{-1}(C) \cap B \right) \\ &= \left(f|_A \right)^{-1}(C) \cup \left(f|_B \right)^{-1}(C) \text{ is closed} \end{split}$$

Theorem. $f: X \to Y, g: Y \to Z$ both continuous, then so is $g \circ f: X \to Z$

proof. Let $W\subseteq Z$ be open sets, then $g^{-1}(W)$ is open and $f^{-1}\big(g^{-1}(W)\big)=(g\circ f)^{-1}(W)$ is open. \Box

Remark. The conclusion of the lemma also holds under the following assumptions:

- $X = A_1 \cup ... \cup A_n$ where all A_i are closed in X and all $f|_{A_i}$ are continuous.
- $X = \bigcup_{\text{Arbitrary Union}}^{\text{Finnerly Many}}$ where all A_i are open in X and all $f|_{A_i}$ are continuous.

In general, it does **not** hold if $X = A \cup B$ where A is open and B is closed.

1.8 Homeomorphisms

Definition (Homeomorphisms). A **homeomorphism** $f: X \to Y$ is a bijection so that f and f^{-1} are both continuous.

If such f exists, we say that X and Y are **homeomorphic** and write

$$X \cong Y$$

Remark.

- 1. Inverses and compositions of homeomorphisms are homeomorphisms, meaning \cong is an **equivalence relation** on the class of top. spaces.
- 2. A homeomorphism $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ induces a bijection $\mathcal{T}\Longleftrightarrow \mathcal{T}'$, thus $X\cong Y\Rightarrow |\mathcal{T}|=|\mathcal{T}'|$
- 3. A property of top. space X is called a **homeomorphism invariant** or a **topological invariant** if it is preserved under \cong . For example, |X|, $|\mathcal{T}|$, Hausdorff, etc.

Example. id : $(X, \mathcal{T}) \to (X, \mathcal{T})$ is a homeomorphism.

Example. If $\mathcal{T} \subseteq \mathcal{P}(X)$ is strictly finer than $\mathcal{T}' \subseteq \mathcal{P}(X)$, then

$$\mathrm{id}:(X,\mathcal{T})\to(X,\mathcal{T}')$$

is a continuous bijection but not a homeomorphism.

Example. $X = \{a, b\}, a \neq b$, recall that there exists 4 topologies:

- $\mathcal{T}_1 = \{\emptyset, X\}$
- $\bullet \ \mathcal{T}_2 = \{\varnothing, \{a\}, X\}$
- $\bullet \ \mathcal{T}_3 = \{\varnothing, \{b\}, X\}$
- $\bullet \ \mathcal{T}_4=\{\varnothing,\{a\},\{b\},X\}$

Only \mathcal{T}_2 and \mathcal{T}_3 can be homeomorphic given by

$$f: X \longrightarrow X$$
$$a \longmapsto b$$
$$b \longmapsto a$$

Example. Take [0,1] and [0,2] as subspaces of \mathbb{R} with usual topology. They are homeomorphic by the map

$$f: [0,1] \longrightarrow [0,2]$$

$$x \longmapsto 2x$$

$$f^{-1}: [0,1] \longleftarrow [0,2]$$

$$\frac{y}{2} \longleftrightarrow y$$

Likewise, $S^1 \cong 2S^1$ where S^1 is the unit circle.

Example. $(0,1) \cong \mathbb{R}$ given by homeomorphism

$$\begin{split} f(x) &:= \tan \Bigl(\pi x - \frac{\pi}{2}\Bigr) \\ f^{-1}(y) &:= \frac{1}{\pi} \Bigl(\arctan(y) + \frac{\pi}{2}\Bigr) \end{split}$$

Example. $f:[0,1)\to S^1$ given by

$$f(x) := (\cos(2\pi x), \sin(2\pi x)) = e^{2\pi i x}$$

is a continuous bijection, but f^{-1} is not continuous: at $(1,0) \in S^1$, f^{-1} does not satisfy the ε - δ condition. In fact, $[0,1] \not\cong S^1$.

Theorem (Piecing lemma for homeomorphisms). $X = A \cup B$, $Y = C \cup D$, $A, B \subseteq X$ closed, $C, D \subseteq Y$ closed. $f: X \to Y$ a map f(A) = C, f(B) = D. Suppose f is a bijection and $f|_A: A \to C$ and $f|_B: B \to D$ are homeomorphisms, then f is a homeomorphism.

Remark (Construction of homeomorphisms). Let $J \subseteq [0,2\pi]$ be subset, suppose $g_1,g_2:J \to [a,b]$, where $0 < a < b < \infty$ are continuous functions. D_1,D_2 are the subsets of \mathbb{R}^2 given by

$$D_i = \left\{ (r,\theta) \mid \theta \in J \text{ and } 0 \leq r \leq g_{i(\theta)} \right\}$$

in polar coordinates. Claim: $D_1 \cong D_2$. Idea is to define a homeomorphism $f: D_1 \to D_2$ by sending each radial segments in D_1 linearly to the corresponding radial segment in D_2 . Put Formally:

$$f(r,\theta)\coloneqq \left(\frac{g_2(\theta)}{g_1(\theta)}r,\theta\right)$$

can check that f is a homeomorphism.

Example.
$$X=D^2=\{(x_1,x_2)\subseteq \mathbb{R}^2\mid x_1^2+x_2^2\leq 1\},\, Y=[-1,1]\times [-1,1],\, X\cong Y.$$
 or,
$$X=\{x\in \mathbb{R}^2\mid \|x\|_{\mathrm{Eucl}}\leq 1\}$$

$$Y=\{x\in \mathbb{R}^2\mid \|x\|_{\mathrm{Max}}\leq 1\}$$

define $f: X \to Y$ by

$$f(x) \coloneqq \begin{cases} 0 & \text{if } x = 0 \\ \frac{\|x\|_{\text{Eucl}}}{\|x\|_{\text{Max}}} x & \text{otherwise} \end{cases}$$

Same works in \mathbb{R}^n :

$$\{x \leq \mathbb{R}^n \ | \ \|x\|_{\mathrm{Eucl}} \leq 1\} \cong [-1,1]^n$$

Definition (Isometry) . Let (X,d),(Y,d') be metric spaces. Any **isometry** $f:X\to Y$ is a bijection so that

$$\forall x_1, x_2 \in X. \ d'(f(x_1), f(x_2)) = d(x_1, x_2)$$

Remark. Isometries are injective and continuous, and every bijective isometry is a homeomorphism.

Example (Some isometries of \mathbb{R}^2).

- Rotations by an angle φ
- Reflections along lines
- Translations
- Glide reflections

Claim. $f: \mathbb{R}^2 \to \mathbb{R}^2$ any map, the following are equivalent:

- (1) f is an isometry fixing 0
- (2) $\forall x, y \in \mathbb{R}^2$. $\langle f(x), f(y) \rangle = \langle x, y \rangle$
- (3) f(x) = Ax for an orthogonal $(A^t A = I_2)$ matrix A

And 3 implies that such map is linear

proof.

• (3) \Rightarrow (1) Let f(x) = Ax for A orthogonal, then f fixes 0 and

$$d(f(x), y(x)^2) = d(Ax, At)^2$$

$$= \langle Ax - Ay, Ax - Ay \rangle$$

$$= \langle A(x - y), A(x - y) \rangle$$

$$= (x - y)^t A^t A(x - y)$$

$$= (x - y)^t (x - y)$$

$$= d(x, y)^2$$

• (1) \Rightarrow (2) Let f be an isometry fixing 0. Follows because

$$\langle x, y \rangle = \frac{1}{2} (d(x, y)^2 - d(x, 0)^2 - d(y, 0)^2)$$

• (2) \Rightarrow (3) Suppose f preserves $\langle \; , \; \rangle$. Let $A=(a_1\;a_2)$ where $a_1:=f(e_1), a_2:=f(e_2)$, then a_1,a_2 are orthogonal, so A is orthogonal. Let $h(x):=A^tf(x)=A^{-1}f(x)$. Then h preserves $\langle \; , \; \rangle$ and fixes e_1,e_2 , so

$$\begin{split} h(x) &= \langle h(x), \, e_1 \rangle e_1 + \langle h(x), \, e_2 \rangle e_2 \\ &= \langle h(x), \, h(e_1) \rangle e_1 + \langle h(x), \, h(e_2) \rangle e_2 \\ &= \langle x, \, e_1 \rangle e_1 + \langle x, \, e_2 \rangle e_2 = x \\ \Rightarrow h(x) &= x \\ \Rightarrow A^{-1} f(x) &= x \Rightarrow f(x) = Ax \end{split}$$

1.9 Linear and affine maps

Easy to see: Every linear map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is continuous and every invertible linear map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is homeomorphism.

Definition. $f: \mathbb{R}^2 \to \mathbb{R}^2$ is affine if

$$\forall a_1, a_2 \in \mathbb{R}^2, \lambda_1, \lambda_2 \in \mathbb{R}. \ f(\lambda_1 a_1 + \lambda_2 a_2) = \lambda_1 f(a_1) + \lambda_2 f(a_2) \text{ with } \lambda_1 + \lambda_2 = 1$$

Exercise. In this case

$$f\!\left(\sum_{i=1}^n \lambda_i a_i\right) = \sum_{i=1}^n \lambda_i f(a_i)$$

with $\sum_{i=1}^{n} \lambda_i = 1$.

Claim. f affine and fixes 0 iff f is linear.

proof.

- " \Rightarrow " Suppose f is affine and fixes 0, and let $\lambda_1, \lambda_2 \in \mathbb{R}$ be arbitrary. Then

$$\begin{split} f(\lambda_1 a_1 + \lambda_2 a_2) &= f(\lambda_1 a_1 + \lambda_2 a_2 + (1 - \lambda_1 - \lambda_2)0) \\ &= \lambda_1 f(a_1) + \lambda_2 f(a_2) + (1 - \lambda_1 - \lambda_2) f(0) \\ &= \lambda_1 f(a_1) + \lambda_2 f(a_2) \\ &\Rightarrow f \text{ is linear} \end{split}$$

Remark. Any constant map is affine, and linear combinations of affine maps are affine.

Corollary. Every affine $f: \mathbb{R}^2 \to \mathbb{R}^2$ has the form

$$f(x) = Ax + b$$

fir a 2×2 matrix A and $v \in \mathbb{R}^2$. Invertible affine maps $f : \mathbb{R}^2 \to \mathbb{R}^2$ are homeomorphisms.

Remark (Special case). Let $\lambda \in \mathbb{R}$, $\lambda \neq 1, \lambda \neq 0$, $f(x) = \lambda x + v$ is a **deletion** or **scaling** by λ with fixed point

$$\frac{1}{1-\lambda}v$$

Definition (Affinely independent). $a_1, a_2, a_3 \in \mathbb{R}^2$ are **affinely independent** if

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}. \ \lambda_1 a_1, \lambda_2 a_2, \lambda_3 a_3 = 0 \quad \Longrightarrow \quad \lambda_1 = \lambda_2 = \lambda_3 = 0$$

Easy to see, a_1, a_2, a_3 affinely independent iff $a_2 - a_1, a_3 - a_1$ linearly independent. Geometry: a_1, a_2, a_3 are not collinear.

Fact. If $a_1, a_2, a_3 \in \mathbb{R}^2$ are affinely independent and $b_1, b_2, b_3 \in \mathbb{R}^2$ are arbitrary, then there exists a unique affine map $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$f(a_i) = b_i \text{ for } i = 1, 2, 3$$

Definition. A homeomorphism composed by multiple maps with piecing lemma is called a PL homeomorphism, where PL stands for **piecewise linear**.

Definition(triangulation). A **triangulation** for \mathbb{R}^2 is a collection T of triangles $t \in \mathbb{R}^2$ such that

- 1. the $t \in T$ cover \mathbb{R}^2
- 2. if two $t \neq t' \in T$ meet, then $t \cap t'$ is either a common edge or a common vertex.
- 3. Every bounded set $B \subseteq \mathbb{R}^2$ meets only finitely many $t \in T$.

Here,

triangle Euclidean triangle, non-degenerate, and the interior is non-empty **bounded** fits into a $B(a, r) \in \mathbb{R}^2$ for r sufficiently large

Definition. A bijection $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a **PL homeomorphism** if there exists triangulations T, T' of \mathbb{R}^2 such that f maps each $t \in T$ affinely (and bijectively) to a $t' \in T'$.

Fact. Every PL homeomorphism of \mathbb{R}^2 is a homeomorphism.

proof. First use the piecing lemma (for finite unions of closed sets) to show that f is continuous on each bounded set $B \subseteq \mathbb{R}^2$. Then use the piecing lemma (for arbitrary union of open sets) to conclude that f is continuous on all of

$$\mathbb{R}^2 = \bigcup_{r>0} B(a,r)$$

Finally, repeat the argument to conclude that f^{-1} is also continuous.

Remark (Some types of homeo's of \mathbb{R}^2 with d_{Eucl}).

Туре	Algebraic Description	Examples
Isometries	$f(x) = Ax + v \mathbb{R}^2 \rtimes O(2)$	congruent triangles
Isometries & scaling	$\mathbb{R}^2 \rtimes \left(O(2) \times \mathbb{R}^2 \right)$	similar triangles
Affine bijection	$\mathbb{R}^2 \rtimes GL_2(\mathbb{R})$	any triangles
PL homeomorphisms	_	simple polygons

Where:

 \mathbb{R}^2 Additive group of \mathbb{R}^2

 \mathbb{R}^+ Additive group of strictly positive real numbers

O(2) set of orthogonal 2×2 matrices

 $GL_2(\mathbb{R})$ set of real invertible 2×2 matrices

1.10 Topological Properties

Properties of a topological space (X, \mathcal{T}) that are preserved under homeomorphisms:

- |X| (number of points)
- $|\mathcal{T}|$ (number of open sets)
- · Minimal cardinality of a basis or a neighborhood base

2nd countable has a countable base

1st countable every point has a countable neighborhood base

1.10.1. Separation Properties

Definition (Regular). X is **regular** if it is Hausdorff and for all closed $C \subseteq X$ and $x \in X \setminus C$ there exist disjoint open sets $U, V \subseteq X$ such that $C \subseteq U$ and $x \in V$

Definition (Normal). X is **normal** if it is Hausdorff and for all disjoint closed $C, D \subseteq X$ there exist disjoint open sets $U, V \subseteq X$ such that $C \subseteq U$ and $D \subseteq V$

Remark. Normal \implies regular \implies Hausdorff

Theorem. A Hausdorff space X is normal iff there exists $U\supseteq C$ and every open neighborhood $U\subseteq C$ there exists an open neighborhood $V\supseteq C$ such that $\overline{V}\subseteq U$

Theorem. A Hausdorff space X is normal iff for all decomposition $X=U\cup V$ into open sets $U,V\subseteq X$, there exists open sets $U',V'\subseteq X$ such that $X=U'\cup V'$ and $\overline{U'}\subseteq U$ and $\overline{V'}\subseteq V$.

Theorem. Every metric space X, d is normal

proof. Already seen: (X,d) is Hausdorff. To show it's normal, Let $C_1,C_2\subseteq X$ be disjoint closed sets. For each $x\in C$, let

$$r_x \coloneqq d(x, C_2) \coloneqq \inf\{d(x,y) \mid y \in C_2\} > 0$$

for each $y \in C_2$, let

$$r_y\coloneqq d(y,C_1)\coloneqq\inf\{d(y,x)\ |\ x\in C_1\}>0$$

define:

$$U \coloneqq \bigcup_{\{x \in C_1\}} B_{d(x,\frac{r_x}{2})}, V \coloneqq \bigcup_{\{y \in C_2\}} B_{d\left(y,\frac{r_y}{2}\right)}$$

and one can check $U \cap V = \emptyset$. Thus X is normal.

1.11 Compactness

Definition (Open Cover). X top. space, $A \subseteq X$ subset. An **open cover** of A is a collection of open sets $U_1 \subseteq X$ such that

$$\bigcup U_i\supseteq A$$

Definition (Subcover). A subcover of U is a subcollection $V \subseteq U$ which is still a cover of A

Definition. $A \subseteq X$ is **compact** if every open cover of A has a **finite** subcover.

Special case: A = X. X is compact if every open cover of X has a finite subcover.

So: compactness can be seen as a property for

- A top. space *X*
- A subset $A \subseteq X$

Easy to see: $A \subseteq X$ compact \iff A compact as a top. space equipped with the subspace topology <u>Usually</u>: regard compactness as a property for top. spaces

Remark. Compactness is preserved under homeomorphisms.

Theorem. Let $f: X \to Y$ be continuous, if X is compact, then so is $f(X) \subseteq Y$

proof. Let $V=\{V_i\}$ be an open cover of $f(X)\subseteq Y,$ $U:=\{f^{-1}(V_i)\}$ is an open cover of X since f is continuous. Since X is compact, there exists a finite subcover $U_{i_1},...,U_{i_k}\in U$ of X, then $V_{i_1},...V_{i_k}$ is a finite subcover of V_i . Thus f(X) is compact.

Example. \mathbb{R} is not compact.

$$U := \{(-r, r) \mid r > 0\}$$

is an open cover with no finite subcover.

Example. X metric space, $A \subseteq X$ an unbounded subset, then A is not compact.

proof. Fix $x \in X$,

$$\bigcup_{r>0}B_{d(x,r)}=X\supseteq A$$

is an cover of A with no finite subcover.

Remark. In a metric space, compact subsets must be bounded. In fact, they must be totally bounded, i.e., for every $\varepsilon > 0$, they can be covered by finitely many ε -balls.

Example. (0,1) us **not** compact, since $(0,1) \cong \mathbb{R}$

Example. [0,1] and $[0,1]^n$ are compact

Example. If a topology space X has only finitely many open sets, it is compact.

Theorem. In a Hausdorff space, every compact subset is closed.

proof. Let X be Hausdorff and $A \subseteq X$ be compact.

Need to show: Every $x \in X \setminus A$ is an interior point of $X \setminus A$.

Consider $y \in A$, since X is Hausdorff, there exists disjoint open neighborhoods $U_y \ni x$ and $V_y \ni y$, then $\{V_y \mid y \in A\}$ is an open cover for A. Since A is compact, there exists a finite subcover $V_{y_1}, ..., V_{y_n}$. Now define

$$U\coloneqq U_{y_1}\cap\ldots\cap U_{y_n}$$

then U is an open neighborhood of x and

$$\begin{split} U \cap A \subseteq U \cap \left(\bigcup V_{y_i}\right) \\ &= \bigcup \left(U \cap V_{y_i}\right) \\ &= \varnothing \\ \Longrightarrow Y \subseteq X \smallsetminus A \end{split}$$

hence x is an interior point of $X \setminus A$. Thus $X \setminus A$ is open, meaning A is closed.

Theorem. In a compact space, every closed subset is compact.

proof. Let X be compact and $A\subseteq X$ be closed. Let $U=\{U_i\}$ be an open cover of A. Then $X\setminus A$ is open, so $U\cup\{X\setminus A\}$ is an open cover of X. Since X is compact, there exists a finite subcover $U_{i_1},...,U_{i_k},X\setminus A$. Then $U_{i_1},...,U_{i_k}$ is a finite subcover of A.

Definition. A map $f: X \to Y$ is open (resp., closed) if the image of each open (resp., closed) subset of X is open (resp., closed) in Y.

Example. The map $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) \coloneqq x_1$, is **open** because the image of any ball is opened interval.

Caution. *f* is not closed. Let

$$A := \left\{ (x_1, x_2) \in \mathbb{R} \mid x_1 \neq 0 \text{ and } x_2 = \frac{1}{x_1} \right\}$$

A is closed in \mathbb{R}^2 but $f(A) = \mathbb{R} - \{0\}$ is not closed in \mathbb{R} .

Remark. If $f: X \to Y$ is a bijection, f closed iff f open iff f^{-1} continuous.

Theorem (Compact-to-Hausdorff Theorem). Let $f: X \to Y$ be a continuous map from a compact space X to a Hausdorff space Y. Then f(X) is compact.

proof. Let $C \subseteq X$ be closed, then C is compact, f(C) is compact, and f(C) is closed. Thus f(X) is compact.

Corollary. Let $f: X \to Y$ be a continuous bijection from a compact space X to a Hausdorff space Y. Then f is a homeomorphism.

proof. f is a closed map, so f^{-1} is continuous.

Caution. The assumption on *X* and *Y* are essential!

Example . $f:[0,1)\to S^1$ given by $f(s)=(\cos(2\pi s),\sin(2\pi s))$ is a continuous bijection but not a homeomorphism.

Example $X = \{a, b\}, a \neq b$. Equip X with the discrete topology, and $Y = \{a, b\}$, but with trivial topology.

$$id: X \longrightarrow Y$$

is a continuous bijection, but not a homeomorphism.

1.12 Compactness in \mathbb{R}

Fact. Every non-empty bounded above subset $A \subseteq \mathbb{R}$ has a least upper bound in \mathbb{R}

Theorem. $[a,b] \in \mathbb{R}$ is compact

Corollary. $A \subseteq \mathbb{R}$ compact iff A closed and bounded.

1.13 Product Topology and compactness in \mathbb{R}^n

Let X, Y be topological spaces.

$$\mathcal{B} := \{ U \times V \mid U \subseteq X \text{ open in } U, V \subseteq Y \text{ open in } Y \}$$

Easy to see: this is a basis for a topology on $X \times Y$ denoted $\mathcal{T}_{product}$.

Definition(Product neighborhood). A $U \times V$ that contains $(x, y) \in X \times Y$ is called a **product** neighborhood of (x, y).

Definition (Two possible extensions to infinite product). $X_i, i \in I$, family of top, space, let X be the set $\prod_{i \in I} X$

1.

$$\mathcal{B}_{\text{product}} \coloneqq \left\{ \prod_{i \in I} U_i \mid U_i \text{ open in } X_i, U_i = X_i \text{ for all but finitely many } i \right\}$$

Product Topology on $X = \prod X_i$

2.

$$\mathcal{B}_{\text{box}} \coloneqq \left\{ \prod_{i \in I} U_i \mid U_i \text{ open in } X_i \right\}$$

Box Topology on $X = \prod X_i$

For finer topologies, $\mathcal{T}_{\mathrm{box}}$ are usually finer than $\mathcal{T}_{\mathrm{product}}$

Proposition . Let $X \times Y$ be equipped with $\mathcal{T}_{\text{product}}$, then the inclusion $i_X : Y \to X \times Y$, $i_Y : X \to Y$, the projections $p_X : X \times Y \to X$, $p_Y : X \times Y \to Y$ are continuous and open.

Remark. $\mathcal{T}_{\text{product}}$ is the smallest (coarsest) topology on $X \times Y$ that makes the projections continuous.

Corollary. For fixed $x \in X$ and $y \in Y$, $\{x\} \times Y$ and $X \times \{y\}$ are homeomorphic to Y and X, respectively.

Theorem (Tychonoff's Theorem). Let $X_i, i \in I$ be a family of compact top. spaces. Then the product $\prod_{i \in I} X_i$ is compact.

proof. We will need tube lemma.

Lemma (Tube lemma). Let Y be compact and $W \subseteq X \times Y$ be an open neighborhood of $\{x\} \times Y$ for an $x \in X$, then there exists an open neighborhood $U \subseteq X$ of x such that $U \times Y \subseteq W$. $U \times Y$ is sometimes called a "tube".

Claim. The standard topology on \mathbb{R}^n , $0 \le n < \infty$ agrees with the product topology on

$$\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$$

Theorem (Heine-Borel). $A \subseteq \mathbb{R}^n$ compact iff A is closed and bounded.

Fact (Generalized Heine-Borel). (X, d) be metric space. X compact iff X complete (every Cauchy sequence has a convergent subsequence) and totally bounded.

Remark. "Compact" is a topological property. "Complete" and "totally bounded" are metric properties that are preserved under bijective isometries.

Definition (Sequences). Let X be topological space. A **sequence** in X is a function

$$s: \mathbb{N} \to X$$

usually write: $s_n \coloneqq s(n)$ and $\{s_n \mid n \in \mathbb{N}\}$ or $\{s_1, s_2, ...\}$ for the sequences.

Definition (Subsequence). A **subsequence** of a sequence s in X is a composition $s' = s \circ j$ for a strictly increasing function $j : \mathbb{N} \to \mathbb{N}$.

In other hands: A subsequence is of the form

$$\left\{s_{j_1}, s_{j_2}, s_{j_3}, \ldots\right\}$$

for $j_1 < j_2 < j_3 < ...$

Definition(Convergence). s be a sequence in X, x be any point in X. We say that s **converges** to x if for every open neighborhood U of x, there exists $N \in \mathbb{N}$ such that $s_n \in U$ for all $n \geq N$.

Equivalently, every open neighborhood of x contains s_n for all but finitely many n.

Remark. In Hausdorff space, a sequence s can converge to at most one point. In this case, we say that x is the **limit** of s and write

$$x=\lim_{n\to\infty}s_n$$

Definition (Sequentially Compactness). A topological space X is **sequentially compact** if every sequence in X has a convergent subsequence.

Question. How is this related to compactness?

<u>Preliminary observation</u>: If $s_n \to x$, then every open neighborhood U of x contains s_n for infinitely many n.

Proposition. Let $x \in X$, if X is 1st countable and if every open neighborhood of x contains s_n for infinitely many n, then s_n has a convergent subsequence converging to x.

proof. Since *X* is 1st countable, there exists a countable neighborhood basis

$$\mathcal{N}_x = \{N_1, N_2, N_3, \ldots\}$$

at x. Define

$$M_i \coloneqq N_1 \cap \ldots \cap N_i$$

then $\{M_1, M_2, ...\}$ is a new neighborhood basis at x and

$$M_1 \supseteq M_2 \supseteq M_3 \supseteq \dots$$

In particular, every open neighborhood U of x contains all M_i with $i\gg 0$. Then we can choose $j_1< j_2< j_3<\dots$ such that

$$s_{j_i} \in M_i$$

then $\left\{s_{j_1}, s_{j_2}, s_{j_3}, \ldots\right\}$ is a subsequence of s that converges to x.

Theorem. If X is 1st countable, then X compact \Rightarrow X sequentially compact.

proof. Suppose X is compact, and suppose S_n is a sequence in X that has no convergent subsequence, then $\forall x \in X$. $\{s_n\}$ has no subsequence converging to x. Since X is comact, there exists finitely many $x_1, ..., x_m \in X$ such that $U_{x_1} \cup ... \cup U_{x_m} = X$, then X contains s_n for only finitely many n, contradiction because $\{s_n\}$ was a sequence in X.

1.14 Lebesgue number lemma

Definition (Lebesgue number). Let (X,d) be metric space, $\mathcal{U}=\{U_i\}$ be an open cover for X. A real number $\mathcal{S}>0$ is called a **Lebesgue number** for \mathcal{U} if every $A\subseteq X$ with $\varnothing(A)<\mathcal{S}$ is contained in some $U_i\in\mathcal{U}$.

Theorem (The Lemma). If a metric space X is sequentially compact then every open cover of X has a Lebesgue number.

proof. Let X be sequentially compact and $\mathcal{U}=\{U_i\}$ be an open cover. Suppose there is no Lebesgue number for \mathcal{U} , there there are arbitrarily small $A\subseteq X$ which are not in U_i . Then there exists a sequence $A_1,A_2,...\subseteq X$ such that

$$\varnothing(A_n)<\frac{1}{n}$$

but since that A_n is not contained in any U_i , choose $a_n \in A_n$ in each A_n , get a sequence $a_1, a_2, ...$ in X that has no convergent subsequence, contradiction.

Theorem. If X is a metric space, then X sequentially compact \Rightarrow X compact.

1.15 Connectness

Definition (Separation). A **separation** for top. space X is a pair of disjoint non-empty open subsets $U, V \subseteq X$ such that $X = U \cup V$

Definition. X is **separated** or **disconnected** if there exists a separation for X. Otherwise X is **connected**.

Note. If $X = U \cup V$ is a separation, then U and V are clopen in X.

Remark. X connected

- \iff X is not a disjoint union of two non-empty closed subsets
- \iff the only clopen subsets of X are \emptyset and X

Definition . A subset $A \subseteq X$ is **separated** (resp., **connected**) if A is separated (resp., connected) in the subspace topology.

Note. Connectness is a topological property.

Theorem. Let $f: X \to Y$ be continuous. If X is connected, then so is f(X).

1.16 Connectness in \mathbb{R}

Definition . $A \subseteq \mathbb{R}$ is **convex** if

$$x, y \in A \Rightarrow [x, y] \subseteq A$$

Remark. Convexity also makes sense in \mathbb{R}^n .

Lemma. $A \subseteq \mathbb{R}$ connected $\Rightarrow A \subseteq \mathbb{R}$ convex, but not true in general.

proof. Suppose $A \subseteq \mathbb{R}$ is connected but not convex, then

$$\exists x,y \in A. \ [x,y] \not\in A$$

$$\Rightarrow \exists z \in [x,y]. \ z \not\in A$$

$$\Rightarrow (-\infty,z) \cap A \text{ and } (z,\infty) \cap A \text{ is a separation for } A$$

$$\Rightarrow A \text{ is disconnected}$$

$$\bot$$

Lemma. $A \subseteq \mathbb{R}$ connected $\Rightarrow A \subseteq \mathbb{R}$ is an interval, a ray, or \mathbb{R} .

proof. Assume for simplicity that A is bounded. Let $a := \inf A$ and $b := \sup A$, then $[a, b] \subseteq A$.

Exercise: Since A is convex, $A \supseteq (a, b)$

4 possibilities: A = [a, b], A = [a, b), A = (a, b], A = (a, b), then A is an interval

Lemma. $A \subseteq \mathbb{R}$ an interval, a ray, or $\mathbb{R} \Rightarrow A \subseteq \mathbb{R}$ connected.

proof. Wil only consider the case

$$A = [a, b]$$
 for $a < b$

Suppose $U, V \subseteq \mathbb{R}$ are open subsets such that $U \cap A$ and $V \cap A$ are disjoint and $U \cup V \supseteq A$.

Need to show: $U \supseteq A$ or $V \supseteq A$.

Assume WLOG that $a \in U$, define

$$B := \{x \in [a, b] \mid [a, x] \subseteq U\}$$

Notice that $a \in B$ since $a \in U$, then $B \neq \emptyset$ and B is bounded since $\subseteq [a, b]$. Let

$$u \coloneqq \sup B \ge a$$

Now prove as an exercise: $u \in U$, $u \in B$, u = b, then $b \in B$, hence $B = [a, b] \subseteq U$, thus $A \subseteq U$. \square

Summary. The following are equivalent:

- (a) A connected
- (b) A convex
- (c) A an interval, a ray, or \mathbb{R}

Theorem (IVT). Let $f: X \to \mathbb{R}$ be continuous. If X is connected and f assumes two values $x, y \in \mathbb{R}$, then it also assumes every value $z \in [x, y]$.

proof. The assumptions imply that $f(X) \subseteq \mathbb{R}$ is connected, then f(X) convex.

Corollary (EVT). Let $X \neq \emptyset$ be connected and compact, then

$$f(X) = [m, M]$$

where m is the absolute minimum of f and M is the absolute maximum of f.

1.16.1. Application

Theorem. Let $f:S^1\to\mathbb{R}$ be continuous. Then

$$\exists x \in S^1. \ f(x) = f(-x)$$

proof. Define $g: S^1 \to \mathbb{R}$ by

$$g(x) := f(x) - f(-x) \in \mathbb{R}$$

then g is continuous and g(-x)=-g(x). Now fix $x\in S^1$. Let $\alpha\in S^1$ be one of the arcs from x to -x. Let $k:=g|_{\alpha}:\alpha\to\mathbb{R}$. Can assume WLOG $k(x)\geq 0$, then $k(-x)\leq 0$, hence there exists $y\in\alpha$ such that k(y)=0, then g(y)=0, and f(y)=f(-y).

Remark. Turns out: If $n \geq 1$ and $f: S^n \to \mathbb{R}^n$ is continuous, then

$$\exists x \in S^n. \ f(-x) = f(x)$$

1.17 Path Connectness

Definition (Path). X top. space, $x, y \in X$, a **path** from x to y is a continuous map $f : [0,1] \to X$ such that

$$f(0) = x \text{ and } f(1) = y$$

In this case, say f connects x to y.

Definition (Path Connectness). *X* is **path connected** if

$$\forall x, y \in X$$
. \exists a path f from x to y

Remark. if f is a path from x to y, then

$$\overline{f}\coloneqq f(1-t), t\in [0,1]$$

is a path from y to x.

Remark. Can also compose paths in X:

f is a path from x to y, g is a path from y to z, define

$$(f*g)(t) \coloneqq \begin{cases} f(2t) & 0 \leq t \leq \frac{1}{2} \\ g(2t-1) & \frac{1}{2} \leq t \leq 1 \end{cases}$$

is a path from x to z

Definition (Path Component). Define a relation \sim on X by

$$x \sim y := \exists$$
 a path f from x to y

 \sim is an equivalence relation, and the equivalence classes are called **path components**, turns out, the maximal path connected subset of X.

Definition. Define a in general different relation \sim on X by

$$x \sim y : \iff \exists$$
 a connected $A \subseteq X$. $A : \ni x, y$

 \sim is an equivalence relation, and the equivalence classes are called **connected components** or just **components**, turns out, the maximal connected subset of X.

Theorem. X path connected \Rightarrow X connected

proof. Suppose X is path connected but not connected, then there exists a separation $U, V \subseteq X$. Let $x \in U$, $y \in V$, there exists a path f from x to y and $[0,1] = f^{-1}(U) \cup f^{-1}(V)$ is a separation for [0,1], contradiction.

Remark (Consequence). Each path component of *X* is connected

- ⇒ each path component is in a connected component
- ⇒ each connected component is a disjoint union of path components

Example. Let $X = A \cup B \subseteq \mathbb{R}^2$,

$$\begin{split} A \coloneqq \left\{ \left(x, \sin\!\left(\frac{1}{x}\right)\right) \mid x \in (0, 1] \right\} \\ B \coloneqq \left\{ (0, y) \mid y \in [-1, 1] \right\} = \left\{ 0 \right\} \times [-1, 1] \end{split}$$

Equip $X \subseteq \mathbb{R}^2$ with the subpace topology from \mathbb{R}^2 . Then X is connected but not path connected. This is called the **topologist's sine curve**.

Fact. Connected components are closed, but path components are not necessarily closed.

Proposition. Every convex subset $A \subseteq \mathbb{R}^n$ is path connected

proof. Obvious: if $x, y \in A$, then

$$g(t) := (1-t)x + ty, t \in [0,1]$$

is a path in A from x to y.

Definition. X is **locally path connected** if for every $x \in X$ and every open neighborhood U of x, there exists an open neighborhood $V \subseteq U$ of x that is a neighborhood basis of x consisting of path connected sets.

Remark. This is equivalent to saying that *X* has a basis consisting of path connected sets.

Example. \mathbb{R}^n is locally path connected

Proposition. Suppose X is locally path connected, and $U \subseteq X$ is open in X, then

U connected $\Longrightarrow U$ path connected

while \Leftarrow always holds.

Definition (Quotient Spaces). $q: X \to Y$ be surjective maps, then

$$U \subseteq Y$$
 open $\iff q^{-1}(U) \subseteq X$ open

In this case:

- *Y* is called the **quotient space** of *X* by *g*
- Say Y has the quotient topology w.r.t. (X, Q)

where $\mathcal{T}_{\text{quotient}} = \left\{ U \subseteq Y \ | \ q^{-1}(U) \subseteq X \text{ open} \right\}$

Corollary. Suppose

$$\begin{array}{ccc}
X & \xrightarrow{f} & X' \\
 \downarrow q & & \downarrow q' \\
 Y & \xrightarrow{g} & Y'
\end{array}$$

is a commutative diagram of continuous maps, where q is a quotient map. If f is continuous, then so is g.

1.18 Construction of quotient spaces

Definition. X space, \sim equivalence relaton on X, consider the map

$$q: X \to \frac{X}{2}$$
, all \sim equivalence classes $[x]$

can equip $\frac{X}{\sim}$ with the quotient topology,

$$U\subseteq \frac{X}{\sim}$$
open $\Longleftrightarrow q^{-1}(U)\subseteq X$ open

 $\left(\frac{X}{\sim},\tau_{\mathrm{quotient}}\right)$ is called an identification space.

Example (Special Case). $A \subseteq X$ subset, define

$$x \sim y : \iff x = y \text{ or } x, y \in A$$

Definition.

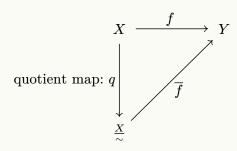
$$\frac{X}{A} := \frac{X}{\sim}$$

"collapsed" *A* to a single point.

Proposition. Let $f: X \to Y$ be a continuous surjection from a compact space X to a Hausdorff space Y. Define

$$\forall x, x' \in X. \ x \sim x' \iff f(x) = f(x')$$

Then the induced map $\overline{f}: \frac{X}{\sim} \to Y$ is a homeomorphism.



proof. It is clear that \overline{f} is a continuous bijection. Moreover, $\frac{X}{\sim}$ is compact since $\frac{X}{\sim}=g(X)$. Then \overline{f} is a continuous bijection from a compact space to a Hausdorff space, thus a homeomorphism.

Example. $X = [0, 1], A = \{0, 1\}$

<u>Claim</u>: $\frac{[0,1]}{\{0,1\}} = \frac{[0,1]}{0 \sim 1} \cong S^1$

proof. Define $f:[0,1]\to S^1$ by

$$f(t)\coloneqq e^{2\pi i t}$$

then f is continuous and surjective. Because [0,1] is compact, S^1 Hausdorff, then $f(t)=f(t')\Longleftrightarrow t=t'$ or $t,t'\in[0,1]$. Therefore $\overline{f}:\frac{[0,1]}{\{0,1\}}\to S^1$ is a homeomorphism. \square

Example.

$$\begin{split} X &= D^n = \left\{ (x_1, ..., x_n) \in \mathbb{R}^2 \ | \ x_1^2 + ... + x_n^2 \leq 1 \right\} \subseteq \mathbb{R}^n \\ A &= \partial D^n = S^{n-1} = \left\{ ... \ | \ x_1^2 + ... + x_n^2 = 1 \right\} \end{split}$$

 $\underline{\operatorname{Claim}} \colon \tfrac{D^n}{\partial D^n} \cong S^n$

proof. Define $f: D^n \to S^n$ by

$$f(x) \coloneqq \left(\underbrace{\sin(\pi \|x\|) \frac{x}{\|x\|}}_{\in \mathbb{R}^n}, \underbrace{-\cos(\pi \|x\|)}_{\in \mathbb{R}}\right) \in \mathbb{R}^n \times \mathbb{R}$$

for x = 0 and f(0) := (0, ..., 0, -1)

f continuous injection. D^n compact, S^n Hausdorff, f(x)=f(x') iff x=x' or $x,x'\in\partial D^n$, then $\overline{f}:\frac{D^n}{\partial D^n}\to S^n$ is a homeomorphism. \square

1.19 Disjoint Union and gluing

Definition(Disjoint Union Topology). A, B disjoint topological spaces, if not, could make them disjoint by replacing them by $A \times [0]$ and $B \times \{1\} \in (A \cup B) \times \{0, 1\}$ as a set. Define

$$\mathcal{T} \coloneqq \{U \cup V \mid U \text{ open in } A, V \text{ open in } B\}$$

then \mathcal{T} is a topology on $A \cup B$ called the **disjoint union topology**. Use the notion

$$A \sqcup B := (A \cup B, \mathcal{T})$$

Note. A, B are clopen in $A \sqcup B$, then if $A, B \neq \emptyset$, then $A \sqcup B$ is disconnected.

Definition. Suppose $K \subseteq B$ is a subset, $f: K \to A$ a continuous map (or homeomorphism)², assume K is closed in B (and K closed in A), then define

$$A\sqcup_f B \coloneqq \frac{A\sqcup B}{f(x)\sim x, \forall x\in K}$$

Why do wee want *K* to be closed and *f* to be continuous?

Claim. The subspace topology on $A \subseteq A \sqcup_f B$ agree with the original topology on A.

proof. Clear that the quotient map

$$q: A \sqcup B \to A \sqcup_f B$$

restrict to a continuousjection from

$$A \stackrel{\mathrm{id}}{\longrightarrow} A$$

from A with original topology to A as a subspace of $A \sqcup_f B$. For every closed set $C \subseteq A$ in subspace topology is also closed in the original topology.

$$q^{-1}(C)=C\cup f^{-1}(C)$$

where $f^{-1}(C)$ is closed in K since f continuous, hence closed in B. Then $q^{-1}(C)$ is closed in $A \sqcup B$, then C is closed in $A \sqcup_f B$ by defintion of $\mathcal{T}_{\text{quotient}}$.

Proposition. Let

$$g: A \sqcup_f B \longrightarrow C$$

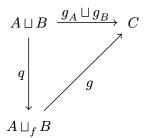
be induced by continuous maps

$$g_A:A\longrightarrow C$$
 and $g_B:B\longrightarrow C$

²Text in grey parenthesis are extra assumptions in textbook

such that $g_A \circ f = g_B|_K$ then g is continuous.

proof. Have



g continuous by the universal property of quotient topology..

Lemma (Urysohn's). Let A, B be disjoint closed subsets in a normal space X, then there exists a continuous $f: X \to [0,1]$ s.t.

$$f(A) \subseteq \{0\}$$
 and $f(B) \subseteq \{1\}$

proof. Slightly lengthy (non-obvious) in general. For metric space, can take:

$$f(x) \coloneqq \frac{d(x,A)}{d(x,A) + d(x,B)}$$

where $d(x, A) := \inf\{d(x, y) \mid y \in A\}$

Remark. Could replace [0,1] by any [a,b]

Remark. If $f: X \to [0,1]$ is a Urysohn function for A and B, then

$$U\coloneqq f^{-1}\bigg(\bigg[0,\frac{1}{2}\bigg)\bigg), V\coloneqq f^{-1}\bigg(\bigg(\frac{1}{2},1\bigg]\bigg)$$

are disjoint open neighborhoods for A and B.

Theorem (Tietze Extension Theorem). Let X normal, $A \subseteq X$ closed, $f: A \longrightarrow [a,b]$ continuous, $a \le b$. Then there exists a continuous $F: X \to [a,b]$ such that $F|_A = f$.

Lemma. The Tietze Extension Theorem also holds for continuous function

$$f:A\longrightarrow \mathbb{R}$$

for $A \subseteq X$ closed and X normal.

1.20 Simply connected space

Recall. X path connected if $\forall x, y \in X$. there exists a path from x to y. Equivalently, every (cont.) map $g: S^0 \to X$ extends to a continuous map $G: D^1 \to X$, where $D^1 = [-1, 1], S^0 = \partial D^1 = \{-1, 1\}$.

Definition. X simply connected if it is path connected and every continuous map $g: S^1 \to X$ extends to a continuous map $D^2 \to X$.

Fact.

- 1. Convex subsets $A \subseteq \mathbb{R}^n$ are simply connected
- 2. S^1 or $\mathbb{R}^2 \{(0,0)\}$ or $\mathbb{R}^3 \{z \text{ axis}\}$ are not simply connected
- 3. If $X = U \cup V$ where
 - $U, V \subseteq X$ are open
 - U, V are simply connected
 - $U \cap V$ is path connected

then X is simply connected

Example. $X = S^2$ or S^n for n > -2, N = (0,0,1), north pole, S = (0,0,-1), south pole. Define

$$U\coloneqq S^2-\{N\}\cong \mathbb{R}^2$$

$$V\coloneqq S^2-\{S\}\cong \mathbb{R}^2$$

then U,V are open and simply connected, $U \cup V = S^2$. Moreover, $U \cap V = S^2 - \{N,S\}$ is path connected, then S^2 is simply connected.

1.21 Jordan Curve Theorem and Schoenflies Theorem

Definition. A simply closed curve in \mathbb{R}^2 is a continuous injection $f: S^1 \to \mathbb{R}^2$.

Remark. The image $C = f(S^1)$ is sometimes also called a "simple closed curve"

Theorem (Jordan Curve Theorem). If $C = f(S^1)$ is a simple closed curve in \mathbb{R}^2 , then $\mathbb{R}^2 \setminus C$ has exactly two connected components. Moreover:

- one these components is bounded and the other one is unbounded
- *C* is the boundary of each of these components

There exists various proofs, e.g. via (co)homology (Lefschetz duality). Direct proof:

proof. Can compactify \mathbb{R}^2 to get $\mathbb{R}^2 \cup \{\infty\} \cong S^2$. Map C onto S^2 without touching ∞ . Now remove $p \in C \subseteq S^2$. to get an "infinite arc" $C' \subseteq \mathbb{R}^2$. This reduces the original problem to showing:

Lemma . If $f: \mathbb{R} \to \mathbb{R}^2$ is a closed embedding and $C' = f(\mathbb{R})$, then $\mathbb{R}^2 \setminus C'$ is not path connected.

proof. Let $C'=f(\mathbb{R}), \ f:\mathbb{R}\to\mathbb{R}^2$ be a closed embedding. Let $g:C'\stackrel{\cong}{\longrightarrow}\mathbb{R}$ be the homeomorphism which is inverse of f. By Tietze Extension Theorem, g extends to a continuous $G:\mathbb{R}^2\to\mathbb{R}$. Think \mathbb{R}^3 as the product of xy-plane and z-axis. Define $F:\mathbb{R}^3\to\mathbb{R}^3$ as the composition

$$(p,z)\longmapsto (p,z+G(p))\longmapsto (p-f(z+G(p)),z+G(p))$$
$$(p,z')\longmapsto (p-f(z'),z')$$

it's easy to see that F is a homeomorphism and maps $C'\subseteq\mathbb{R}^2\subseteq\mathbb{R}^3$ bijectively to the z-axis. Then

$$\mathbb{R}^3 \setminus C' \cong_F \mathbb{R}^3 \setminus \{ \text{z axis} \}$$

then $\mathbb{R}^3 \setminus C'$ is not simply connected. On the other hand, can write $\mathbb{R}^3 \setminus C'$ as $\mathbb{R}^3 \setminus C' = U \cup V$ where

$$\begin{split} U &\coloneqq \left(\mathbb{R}^2 \times (0,\infty)\right) \cup \left(\left(\mathbb{R}^2 \smallsetminus C'\right) \times (-1,1)\right) \\ U &\coloneqq \left(\mathbb{R}^2 \times (-\infty,0)\right) \cup \left(\left(\mathbb{R}^2 \smallsetminus C'\right) \times (-1,1)\right) \end{split}$$

can check that U and V are open and simply connected. Note that $U \cap V = (\mathbb{R}^2 \setminus C') \times (-1,1)$. If $\mathbb{R}^2 \setminus C'$ were path connected, then $U \cap V$ would be path connected, contradiction, hence $\mathbb{R}^2 \setminus C'$ is not path connected.

Note (Why is this proof nice?).

- To prove that $\mathbb{R}^2 \setminus C'$ is not path connected, would like to straiten C'
- This is hard to do in \mathbb{R}^2 , but easier in \mathbb{R}^3
- Turns out: C' can be straightened in \mathbb{R}^2

Theorem(Schoenflies Theorem). If $C = f(S^1)$ is a simple closed curve in \mathbb{R}^2 , then there exists a homeomorphism from \mathbb{R}^2 to itself which takes C to S^1 .

In particular:

- This homeomorphism maps the bounded component of $\mathbb{R}^2 \setminus C$ to $D^2 \setminus \partial D^2$, meaning this component is $\cong D^2 \setminus \partial D^2$
- The unbounded component is $\cong \mathbb{R}^2 \setminus D^2$

proof. Not too hard if C is a simple polygon, but hard in general. Proof omitted.

Note. Suppose $f: S^1 \to \mathbb{R}^2$ is smooth (a C^{∞} diffeomorphism onto its image) and $C := f(S^1)$. Let $x \in \mathbb{R}^2 \setminus C$. How can we tell whether x is in the bounded or the unbounded component of $\mathbb{R}^2 \setminus C$?

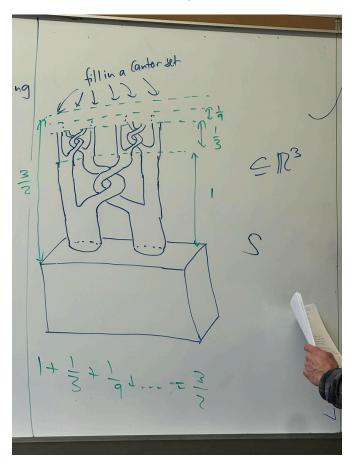
- Choose a base point $x_0 \in \mathbb{R}^2 \setminus C$ that is "far away" from C
- Choose a smooth path $\gamma_x \subseteq \mathbb{R}^2$ for x to x_0 which intersects C transversely
- x is in the bounded component if $|C \cap \gamma_x|$ is odd and in the unbounded component otherwise.

1.21.1. Situation in higher dimensions

Let $f: S^{n-1} \to \mathbb{R}^n$ continuous injection. $S \coloneqq f(S^{n-1}) \subseteq \mathbb{R}^n$. Jordan Curve Theorem remains true: $\mathbb{R}^n \setminus C$ has exactly 2 path components, can be proved by cohomology and Lefschetz duality. But, in general:

- The bounded component is **not** $\cong D^n \setminus \partial D^n$
- The unbounded component is **not** $\cong \mathbb{R}^n \setminus D^n$

Example (in \mathbb{R}^3). Construct a nontrivial embedding of \mathbb{S}^2 into \mathbb{R}^3 .



Get an embedding of S^2 into \mathbb{R}^3 such that the unbounded component is not $\cong \mathbb{R}^3 \setminus D^3$.

1.22 Local flatness and collar neighborhoods

Definition (Local Flatness or Topological flatness). A topological embedding $f: S^{n-1} \to \mathbb{R}^n$ is locally **flat** if

$$\forall p \in S \coloneqq f(S^{n-1}). \; \exists \text{ an open neighborhood } U \subseteq \mathbb{R}^n. \; (U,U \cap S) \cong \left(\mathbb{R}^n,\mathbb{R}^{n-1} \times \{0\}\right)$$

Example. The Alexander horned sphere is not locally flat.

Example (for codimension 2 embeddings). Embed \mathbb{R} into \mathbb{R}^3 by infinite many decreasing "knots" that has a limit point. This embedding is not locally flat.

Example (for codimension 2 embeddings). Let $K \subset \mathbb{R}^3 \subseteq \mathbb{R}^3 \cup \{\infty\} \cong S^3$ a knotted simple closed curve. In D^4 , connect each point of K to the center of D^4 using a straight line segment.

Definition (bi-collared). Let $f: S^{n-1} \to \mathbb{R}^n$ is a continuous injection, $S := f(S^{n-1})$. S is **bi-collared** if there exists an open neighborhood $U \subseteq \mathbb{R}^n$ of S and a homeomorphism

$$F: (S^{n-1} \times (-1,1)) \xrightarrow{\cong} U$$

such that $F\mid_{S^{n-1}\times\{0\}}=f$

Theorem (Brown, 1961). S locally flat $\Longrightarrow S$ bi-collared

Theorem (Generalized Schoenflies Theorem, Brown 1960). S bi-collared \Longrightarrow the components of $S^n \setminus S$ are $\cong D^n \setminus \partial D^n$

Note. For $n=2,\,C$ is locally flat $\stackrel{\text{Brown}}{\Longrightarrow} C$ bi-collared $\stackrel{\text{GST}}{\Longrightarrow}$ the components of $S^2\setminus C$ are $\cong D^2\setminus \partial D^2$

Chapter 2

The classification of surfaces

Definition (Notations).

$$\begin{split} D^n &:= \left\{ (x_1,...,x_n) \in \mathbb{R}^n \mid x_1^2 + ... + x_n^2 \leq 1 \right\} \\ S^{n-1} &:= \partial D^n \\ D^1 &= [-1,1] \\ D^0 &= \left\{ 1 \text{ point} \right\} \end{split}$$

2.1 Manifolds

Definition(n-manifold). An n-manifold is a 2nd countable Hausdorff space M such that every $x \in M$ has an open neighborhood $U \subseteq M$ with $U \cong \mathbb{R}^n$.

So, M locally "looks like" \mathbb{R}^n .

Fact. Every n-manifold can be embedded into \mathbb{R}^{2n+1} , i.e., it's homeomorphic to a subspace of \mathbb{R}^{2n+1} .

Theorem. Every compact n-manifold M can be embedded into \mathbb{R}^N for some $N < \infty$.

proof. Cover M by finitely many open sets $U_i,...,U_k$ with $U_i\cong\mathbb{R}^n$, possible since M is a compact n-manifold. For each i, let

$$f_i:U_i\to\mathbb{R}^n$$

be a homeomorphism. Define

$$g_i: M \to \mathbb{R}^n \cup \{\infty\} \cong S^n$$

by

$$g_{i(x)} \coloneqq \begin{cases} f_i(x) & x \in U_i \\ \infty & x \notin U_i \end{cases}$$

Exercise: check that g_i is continuous (use that $U \subseteq \mathbb{R}^n \{\infty\} \subseteq S^n$ is open iff U is an open subset of \mathbb{R}^n or $\infty \in U$ and $(\mathbb{R}^n \cup \{\infty\}) \setminus U$ is a compact subspace of \mathbb{R}^n)

Let $h_i: M \to \mathbb{R}^{n+1}$ be the composition

$$M \xrightarrow{g_i} S^n \hookrightarrow \mathbb{R}^{n+1}$$

then h_i is continuous. Now define $F:M o \widehat{\mathbb{R}^{n+1}\times ...\times \mathbb{R}^{n+1}}=\mathbb{R}^{k(n+1)}$ by

$$F(x)\coloneqq \left(h_1(x),...,h_{k(x)}\right)$$

Exercise: F continuous injective, thus a homeomorphism onto its image because M compact and $\mathbb{R}^{k(n+1)}$ Hausdorff.

Definition (surface). A 2-manifold is called a **surface**.

Definition(*n*-manifold with boundary). A *n*-manifold with boundary is a 2nd countable Hausdorff space M s.t. $\forall x \in M$. \exists an open neighborhood $U \subseteq M$ of x. and a homeomorphism h from U to an open subset of \mathbb{H}^n , where

$$\mathbb{H}^n := \{ (x_1, ..., x_n) \in \mathbb{R}^n \mid x_n \ge 0 \}$$

$$\partial \mathbb{H}^n \coloneqq \{(x_1,...,x_n) \in \mathbb{R}^n \mid x_n = 0\}$$

Fact.

- 1. If x is an interior point of M, then it has an open neighborhood $\cong \mathbb{R}^n$.
- 2. If x is a boundary point of M, then it has an open neighborhood $\cong \mathbb{H}^n$
- 3. A point $x \in \partial H$ can't simultaneously be an interior point and a boundary point.

Definition. $\partial M := \{\text{all boundary points of } M\}$

Fact. ∂M is an (n-1)-manifold without boundary

Definition. An *n*-manifold *M* is called **closed** if it is compact and has empty boundary.

Example. \mathbb{R}^n is an *n*-manifold without boundary (but not closed for n > 0 because not compact)

Example. \mathbb{H}^n is an *n*-manifold with boundary

Example. S^n is a closed n-manifold and $x \in S^n$ is one of the sets

$$U := S^n - \{N\} \cong \mathbb{R}^n$$
$$V := S^n - \{S\} \cong \mathbb{R}^n$$

Example. Every countable discrete space is a 0-manifold (since 2nd countable, Hausdorff, and locally homeomorphic to $\mathbb{R}^0 = \{0\}$)

Example. With n=1, the only compact nonempty connected 1-manifolds are [0,1] and S^1 .

Example.

$$\mathbb{H}^2_+ = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 0 \text{ and } x_2 \ge 0\}$$

and $\mathbb{H}^2_+ \cong \mathbb{H}^2$, hence a 2-manifold with boundary

Example. Goal: Classify compact surfaces with boundary up to homeomorphism.

1. 2-Sphere

$$S^2 = \{ x \in \mathbb{R}^3 \mid ||x|| = 1 \}$$

2. Real Projective Plane

$$P=\mathbb{RP}^2=\{\text{Unoriented straight lines through the origin}\in\mathbb{R}^3$$

$$=\frac{S^2}{x\sim -x}$$

Can check that the quotient map $S^2 \to P$ is a local homeomorphism (in fact, a covering map), that is, every $x \in S^2$ has a neighborhood that gets mapped homeomorphically to an open set in P.

3. Torus

$$T = S^1 \times S^1 = \frac{[0,1]^2}{\left\{ (0,t) \sim (1,t) \atop (s,0) \sim (s,1) \right\}} \cong \frac{\mathbb{R}^2}{\mathbb{Z}^2}$$

Here, $\frac{\mathbb{R}^2}{\mathbb{Z}^2}$ means that we identify two points $x,y\in\mathbb{R}^2$ if $x-y\in\mathbb{Z}^2$. Explicit quotient:

$$\mathbb{R}^2 \longrightarrow S^1 \times S^1 = T$$
$$(s,t) \longmapsto (e^{2\pi i s, 2\pi i t}) \in \mathbb{C} \times \mathbb{C}$$

this map is a local homeomorphism.

4. Klein Bottle

$$K = \frac{[0,1]^2}{\left\{ {(0,t) \sim (1,t) \atop (s,0) \sim (1-s,1)} \right\}}$$

There exists a map

$$T \longrightarrow K$$

given by

$$\begin{split} (s,t) &\longmapsto (s,2t) \quad \text{if } t \in \left[0,\frac{1}{2}\right] \\ (s,t) &\longmapsto (1-s,2t-1) \quad \text{if } t \in \left[\frac{1}{2},1\right] \end{split}$$

2.2 Invariance of domain

Theorem. $U \subseteq \mathbb{R}^n$ open. If $f: U \to \mathbb{R}^n$ is a continuous injection, then f is open.

proof. Suffices to show that every sufficiently small open ball $B(x,\varepsilon)\subseteq\mathbb{R}^n$ with $B(x,\varepsilon)\subseteq U$ is sent to an open subset of \mathbb{R}^n . Let B be such a ball. By making ε smaller, we can assume $\overline{B}\subseteq U$, then by Jordan Separation Theorem, $\mathbb{R}^n\setminus f(\partial B)$ has 2 path components. Moreover, f(B) is path-connected since B.

Fact. $\mathbb{R}^n \setminus f(\overline{B})$ is also path-connected

then f(B) and $\mathbb{R}^n \setminus f(\overline{B})$ must be the path components of $\mathbb{R}^n \setminus f(\partial B)$, then f(B) is open and \mathbb{R}^n is locally path connected.

Corollary. If $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^n$ are nonempty open subsets with $U \cong V$, then m = n.

proof. Suppose $m \neq n$, and assume WLOG m > n. Consider a homeomorphism

$$f:U\stackrel{\cong}{\longrightarrow} V$$

and compose f with the embedding

$$\mathbb{R}^n \longrightarrow \mathbb{R}^n \times \{0\} \hookrightarrow \mathbb{R}^m$$

to get a continuous injection

$$f':U\longrightarrow \mathbb{R}^m$$

by theorem, f' is open, then f'(U) is open but $f'(U) \notin \emptyset$ and $f'(U) \subseteq \mathbb{R}^n \times \{0\} \cong \mathbb{R}^n$, contradiction.

2.3 Surfaces with boundary

Definition. Let M be connected surface, possibly with boundary.

 $D \subseteq M \setminus \partial M$ embedded closed disk, i.e.

 $D=f(D^2)$ for a continuous injection $f:D^2\to M\setminus\partial M$. Can check that $f(D^2\setminus\partial D^2)=D\setminus\partial D$. Then

$$M_{(1)} := M \setminus f(D^2 \setminus \partial D^2)$$

Remark. $M_{(1)}$ is independent of the choice of D, up to homeomorphism. Reason: M connected space, $D_1, D_2 \subseteq M \setminus \partial M$ embedded closed disks.

Lemma (Disk lemma). There exists a homeomorphism with $h(D_1) = D_2$

Definition (Generalization). *M* be connected space,

$$D_1, ..., D_n \subseteq M \setminus \partial M$$

be disjoint embedded closed disks. then

$$M_{(n)} \coloneqq M \smallsetminus \left(\bigcup_{i=1}^n \operatorname{int}(D_i)\right)$$

Example (Surfaces with $\partial M \neq \emptyset$).

1. Closed disk

$$D_2 \cong S^2 \setminus \operatorname{int}(\text{upper hemisphere}) \cong S^2_{(1)}$$

2. Annulus / cylinder

$$S^{1} \times [0,1] \cong \frac{[0,1]^{2}}{(0,t) \cong (1,t)}$$
$$\cong S^{2} \setminus \operatorname{nbhd}\{N,S\}$$
$$\cong S^{2}_{(2)}$$
$$\cong D^{2}_{(1)}$$

3. Möbius band

$$\frac{[0,1]^2}{(0,t) \cong (1,1-t)}$$

There exists a 2-1 map fron the annulus to the Möbius band given by

$$(s,t) \longmapsto (2s,t) \quad \text{if } s \in \left[0, \frac{1}{2}\right]$$

$$(s,t) \longmapsto (2s-1, 1-t) \quad \text{if } s \in \left[\frac{1}{2}, 1\right]$$

Also:

Möbius band
$$\cong \frac{S^2 - \mathrm{nbhd}\{N,S\}}{x \sim -x} = P_{(1d)}$$

Definition (Handle). An *i*-handle (of dimension i + j) is a space $D^i \times D^j$

Note. Abstractly:

$$D^i \times D^j \cong D^{i+j}$$

but the product structure on $D^i \times D^j$ will matter. For i+j=2:

• 0-handle: $D^0 \times D^2$ disk • 1-handle: $D^1 \times D^1$ square • 2-handle: $D^2 \times D^0$ disks

Definition. A 2 dimensional 2-handle body is a topology space M that is built out of 2dimensional handles as follows:

0. Start with a finite collection of disjoint 2-dimension 0-handles

$$M_0 = \bigcup_{i=1}^{k_0} h_i^0 \quad \text{(0-handles)}$$

1. Build M_1 by attaching 2-dimension 1-handles to M_0 . That is,

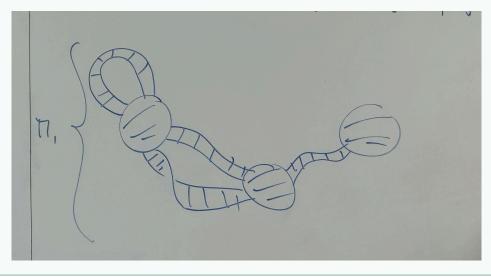
$$M_1=M_0\cup\bigcup_{j=1}^{k_1}h_j^1$$

where we attach h_i^1 to M_0 using a continuous attaching maps

$$f^1_j\coloneqq \left(\partial D^1\right)\times D^1\longrightarrow \partial M_0=\bigcup_{i=1}^{k_0}\partial h^0_i$$

we'll assume:

- f_j^1 is a topological embedding the images of the f_j^1 are disjoint for $j=1,...,k_1$



2. Build $M=M_2$ by attaching 2-dimensional 2-handles $h_1^2,...,h_{k_2}^2$ to ∂M_1 using attaching map

$$f_j^2: (\partial D^2) \times D^0 \longrightarrow \partial M_1$$

with the same assumptions as above.

So that M_2 is obtained from M_1 from gluing 2-disks to some boundary components of M_1 .

Theorem (Rado, 1940s). Up to homeomorphism,

 $\{\text{compact surfaces with boundary}\} = \{2\text{-dimensional }2\text{-handle bodies}\}$

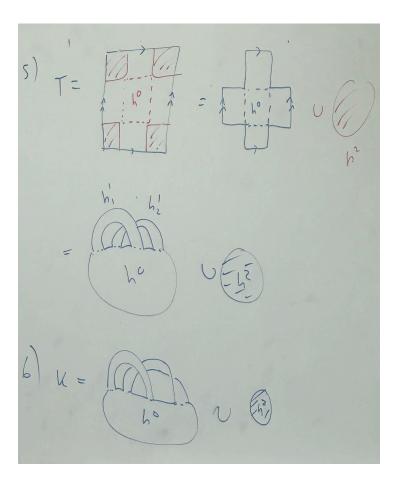
We'll use this without proof.

Definition (Handle Decomposition). An identification of a surface M with a 2-handle body is called a **handle decomposition** of M.

Example.

- 1. Annulus = $h^0 \cup h^1$
- 2. Möbius band = $h^0 \cup h^1$
- 3. $S^2 = h^0 \cup h^2$
- 4. $P_{(1)} = \text{M\"obius band, so}$

$$P = h^0 \cup h^1 \cup h^2$$



Theorem. M, H be spaces, $B \subseteq M, A \subseteq H$ be closed subsets, and homeomorphisms

$$f,g:A\to B$$

If $g^{-1} \circ g$ extends to a homeomorphism of H or $f \circ g^{-1}$ extends to a homeomorphism of M, then

$$H\sqcup_f H\cong M\sqcup_B M$$

proof. Assume $g^{-1} \circ f$ extends to a homeomorphism $F: H \to H$, then

$$M \xrightarrow{\text{id}} M$$

$$\sqcup_f$$
 \sqcup_g

$$H \xrightarrow{F} H'$$

is the desired homeomorphism. If $f \circ g^{-1}$ extends over M, replace f and g by their inverses. \square

Theorem. If M is connected, then there exists only one way to attach (via an embedding $f: \partial D^2 \to \partial M$) a 2-handle up to homeomorphism.

proof. Let $f,g:\partial D^2\to \partial M$ be two attaching maps. First note that $f(\partial D^2)$ and $g(\partial D^2)$ must be connected components S^1_1 and S^1_2 of ∂M . Suppose $S^1_1\neq S^1_2$. By attaching disks to $S^1_1,\,S^1_2$, we get a surface \widehat{M} such that $M=M^2_{(2)}$. By lemma, there exists a homeomorphism $h:M\to M$ with $h(S^1_1)=S^1_2$, then g and $h^{-1}\circ g$ differ by h, which is defined on all of M, then we can assume $S^1_1=S^1_2$. Now f,g are both homeomorphism:

$$f,g:\partial D^2\longrightarrow S^1_1$$

follows so is $g^{-1} \circ f$ and it extends to a homeomorphism $F: D^2 \to D^2$, explicitly,

$$F(x) \coloneqq \begin{cases} 0 & \text{if } x = 0 \\ \|x\| \ (g^{-1} \circ f) \left(\frac{x}{\|x\|}\right) & \text{if } x \neq 0 \end{cases}$$

By the previous theorem,

$$M \sqcup_f D^2 \cong M \sqcup_g D^2$$

Proposition. If M is a 2-dimensional 2-handle body, then

M connected $\iff M_1(M$ without the 2-handles) connected

proof.

- (\Longrightarrow) Follows since every 2-handle gets attached to a single connected component of M_1 .
- (⇐=) Follows because each 2-handle is connected

Remark. To clasify connected 2-handle bodies, it suffices to classify 2-handle bodies with $\partial M \neq \emptyset$.

$$\frac{\left\{ \begin{array}{c} \text{closed nonempty} \\ \text{connected surfaces} \end{array} \right\}}{\text{homeomorphism}} \longleftrightarrow \frac{\left\{ \begin{array}{c} \text{compact connected} \\ \text{surfaces with exactly} \\ \text{one boundary component} \end{array} \right\}}{\text{homeomorphism}}$$

Theorem. There exists only one way to attach a 0-handle

proof. Attaching a 0-handle is the same as taking the disjoin union with a disk D^2 .

2.4 Isotopies

Definition (Isotopy). Let *B* a space, let

$$g_0, g_1: B \to B$$

be homeomorphisms. They are **isotopic** if there exists a continuous map

$$G: B \times I \rightarrow B$$

such that

- 1) $G_0 = g_0$
- 2) $G_1 = g_1$
- 3) $G_t: B \to B$ is a homeomorphism for all $t \in I$

where $G_{t(b)} := G(b,t)$. Can regard $\{G_t \mid t \in I\}$ is a "continuous family" of homeomorphisms $G_t : B \to B$. Call G an **isotopy** from g_0 to g_1 .

Definition(Ambient isotopic). g_0, g_1 are **ambient isotopic** if there exists an isotopy G such that

$$G_0 = \mathrm{id}_B$$
 and $G_1 \circ g_0 = g_1$

Definition. Let $G: B \times I \rightarrow B$ be an isotopy, define

$$\tilde{G}: B \times I \longrightarrow B \times I$$

by

$$\tilde{G}(b,t) := (G(b,t),t)$$

then \tilde{G} is a continuous bijection.

Fact. If B is compact and Hausdorff, then \tilde{G} is a homeomorphism. (by compact-to-Hausdorff theorem)

Remark. This remains true if B is only locally compact. (idea: replace B by its 1-point compactification)

Theorem. Let M be compact surface, $h^1 = D^1 \times D^1$, the 2-dimensional 1-handle,

$$f,g:(\partial D^1)\times D^1\longrightarrow \partial M$$

be embeddings. If f, g are ambient isotopic, then

$$M \sqcup_f h^1 \cong M \sqcup_g h^1$$

proof. We need:

Fact (Brown). M be a compact surface. ∂M has a **collar neighborhood** in M. That is, a closed set $C \subseteq M$ with $C \supseteq \partial M$ and such that there exists a homeomorphism

$$\varphi: C \longrightarrow (\partial M) \times I$$

which restricts to the "identity map"

$$\partial M \longrightarrow (\partial M) \times \{1\}$$

In this case, $\varphi^{-1}((\partial M) \times (0,1])$ is open in M.

Suppose $f,g:\left(\partial D^{1}\right)\times D^{1}\rightarrow\partial M$ are ambient isotopic, and let

$$G:(\partial M)\times I\to \partial M$$

be an ambient isotopy between f and g. Because ∂M is compact, \tilde{G} is a homeomorphism. Regard \tilde{G} as

$$\tilde{G}:C\longrightarrow C$$

where C is a collar neighborhood of ∂M in M. Define the homeomorphism between $M \sqcup_f h'$ and $M \sqcup_g h'$ by letting it to be id on h' and $M \setminus \varphi^{-1}(\partial M) \times (0,1]$, and \tilde{G} for the rest. \square

2.4.1. Homeomorphisms of I = [0, 1]

Definition. Homeo(X) = {homeomorphism $f: X \to X$ } is a group w.r.t. composition.

Lemma. Homeo([0,1]) = {strictly monotone bijection $f: [0,1] \rightarrow [0,1]$ }

proof. Every $f \in \text{Homeo}([0,1])$ is monotonous by the intermediate value theorem. (exercise).

Conversely, if $f:[0,1] \to [0,1]$ is a monotonous bijection then it bijectively send intervals of the form (a,b),[0,b),(a,1], for 0 < a < b < 1 to intervals of the same type. f is a homeomorphism because intervals form a basis for the topology of [0,1].

Note. If $f \in \text{Homeo}([0,1])$, then

- f increasing, then f fixes 0 and 1
- f decreasing, then f swaps 0 and 1

Lemma. If $f \in \text{Homeo}([0,1])$ is increasing, then it isotopic to $\text{id}_{[0,1]}$.

proof. Define

$$G_{t(s)} := (1-t)f(s) + ts \text{ for } (s,t) \in [0,1]^2$$

then $G_0=f$ and $G_1=\mathrm{id}_{[0,1]}$. Moreover, each $G_t:[0,1]\to [0,1]$ is a strictly increasing continuous map and fixes 0 and 1, then each G_t is surjective and injective and monotone, hence a homeomorphism. Then G is an isotopy from f to $\mathrm{id}_{[0,1]}$.

<u>Likewise</u>, if $f \in \text{Homeo}([0,1])$ is decreasingm then it is isotopic to the map that swaps 0 and 1 (given by r(s) := 1 - s).

Lemma. $id_{[0,1]}$ is not isotopic to r.

proof. Suppose $\{G_t \mid [0,1] \to [0,1]\}$ is an isotopy from $G_0 = \mathrm{id}_{[0,1]}$ to $G_1 = r$. Each G_t fixes or swaps 0 or 1. $\forall t \in [0,1]$. $G_{t(0)} \in \{0,1\}$. Define $\gamma(t) \coloneqq G_{t(0)}$ is a path in $\{0,1\}$ with

$$\gamma(0)=G_0(0)=0$$
 and $\gamma(1)=G_1(0)=1$

then $\{0,1\}$ is path connected, contradiction.

Definition (Mapping class group).

$$\mathrm{MCG}(X) \coloneqq \frac{\mathrm{Homeo}(X)}{\sim}$$

where \sim identify two homeomorphisms if they are isotopic forms a group called the **mapping** class group of X.

Remark.

$$MCG([0,1]) \cong \mathbb{Z}_2$$

likewise, if X = (0,1) or $X = \mathbb{R}$, then

 $\operatorname{Homeo}(X) = \{ \text{strictly monotone bijection } f: X \to X \}$

and

$$MCG(X) \cong \mathbb{Z}_2$$

Corollary. Every homeomorphism $f:(0,1)\to (0,1)$ extends to a homeomorphism $\tilde f:[0,1]\to [0,1]$ defined by:

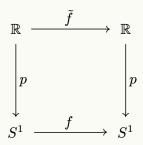
$$|\tilde{f}|_{\{0,1\}} = \mathrm{id}_{\{0,1\}} \text{ if } f \text{ increasing}$$

$$\tilde{f}|_{\{0,1\}} = r|_{\{0,1\}}$$
 if f decreasing

proof. \tilde{f} defined as above is a monotone bijection and hence a homeomorphism.

2.4.2. Homeomorphism of S^1

Lemma. $\forall f \in \text{Homeo}(S^1). \ \exists \tilde{f} \in \text{Homeo}(\mathbb{R}).$



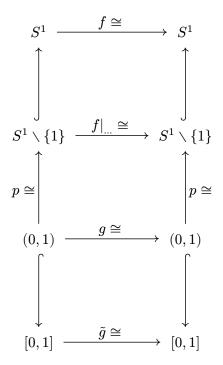
commutes, where $p(x) \coloneqq e^{2\pi i x} \in S^1 \subseteq \mathbb{C}$. Moreover \tilde{f} is unique up to

$$\tilde{f} \sim \tilde{f} + n \text{ for } n \in \mathbb{Z}$$

proof.

• Existence of \tilde{f}

Can assume WLOG that f fixes 1, then we have



We can assume WLOG that \tilde{g} is increasing. Now define $\tilde{f}: \mathbb{R} \to \mathbb{R}$ by

$$\tilde{f}(x) \coloneqq \tilde{g}(x - |x|) + |x|$$

can check that \tilde{f} is a homeomorphism with $p \circ \tilde{f} = f \circ p$.

• Uniqueness of \tilde{f} up to $\tilde{f} \sim \tilde{f} + n$

Suppose $\tilde{f}, \tilde{g}: \mathbb{R} \to \mathbb{R}$ are two homeomorphisms that make the diagram commute. Then

$$\begin{split} p \circ \tilde{f} &= p \circ \tilde{g} \\ \Longrightarrow \forall x \in \mathbb{R}. \ \tilde{g}(x) &= \tilde{f}(x) + n_x \ \text{for} \ n_x \in \mathbb{Z} \\ \Longrightarrow \tilde{g} - \tilde{f} \in \mathbb{Z} \end{split}$$

 $\Longrightarrow \tilde{g} - \tilde{f}$ must be constant because every constant map $\mathbb{R} \to \mathbb{Z}$ is a homeomorphism

Remark. If g is increasing, then \tilde{f} satisfies

$$\forall m \in \mathbb{Z}. \ \tilde{f}(x+m) = \tilde{x} + m$$

Definition. Call $f \in \text{Homeo}(S^1)$

- **orientation preserving** if \tilde{f} is increasing
- **orientation reversing** if \tilde{f} is decreasing

Lemma. If $f \in \text{Homeo}(S^1)$ is orientation preserving, then it is isotopic to id_{S^1} .

proof. Let $\tilde{f}: \mathbb{R} \to \mathbb{R}$ be a lift of f and define

$$G: \mathbb{R} \times I \to \mathbb{R}$$

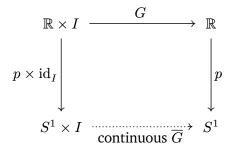
by $G(x,t) := (1-t)\tilde{f}(x) + tx$. Then

- 1. G is isotopy from $G_0 = \tilde{f}$ to $G_1 = \mathrm{id}_{\mathbb{R}}$ (to prove this, use that each G(-,t) is a continuous strictly monotonous surjection)
- 2. G satisfies

$$\forall m \in \mathbb{Z}. \ G(x+m,t) = G(x,t) + m$$

(again use that \tilde{f} is increasing)

Then consider following diagram



Then \overline{G} is an isotopy from f to id_{S^1} . Likewise, if f is orientation reversing, then it is isotopic to $r(z) := \overline{z}$ for $z \in S^1 \subseteq \mathbb{C}$.

Lemma. id_{s^1} is not isotopic to r.

proof. Suppose $G: S^1 \times I \to S^1$ is an isotopy from $G_0 = \mathrm{id}_{S^1}$ to $G_1 = r$. Define

$$B = i, C = -1, A = 1$$

$$v_t \coloneqq G_{t(B)} - G_{t(A)}$$

$$w_t \coloneqq G_{t(C)} - G_{t(A)}$$

 $\gamma(t) \coloneqq \{\text{z-coordinate of } v_t \times w_t\} \in \mathbb{R} \setminus \{0\}$

then γ is a path in $\mathbb{R} \setminus \{0\}$ and $\gamma(0) > 0$ and $\gamma(1) < 0$, contradiction.

Remark. $MCG(S^1) \cong \mathbb{Z}_2$

Definition.

$$\begin{aligned} \operatorname{Homeo}^+(S^1) &= \left\{ \text{orientation preserving homeomorphisms } f:S^1 \to S^1 \right\} \\ &= \left[\operatorname{id}_{S^1} \right] < \operatorname{Homeo}(S^1) \end{aligned}$$

Definition (Arc). A proper subset $I \subset S^1$ will be called an **arc** if it is path connected. Equivalently, I is an arc if it is homeomorphic to $[a, b] \subseteq \mathbb{R}$.

Lemma. Homeo⁺ (S^1) acts transitively on pairs of disjoint arcs in S^1 . That is, if $I, J \subseteq S^1$ are disjoint arcs, and I', J' are another pair of disjoint arcs, then there exists $f \in \operatorname{Homeo^+}(S^1)$ such that f(I) = I' and f(J) = J'.

proof. Can assume

$$I' = p\left(\left[0, \frac{1}{4}\right]\right), \quad J' = p\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right)$$

after applying a rotation, we can then assume that the initial point (w.r.t. counterclock wise) of I is at $1 \in S^1$.

$$\implies I = p([a, b]), \quad j = p([c, d]), 0 = a < b < c < d < 1$$

can define a piecewise linear homeomorphism \tilde{f} that indices a $f:S^1\to S^1$ with f(I)=I' and f(J)=J'

2.5 Handle Slides

Theorem. Let M be compact surface with boundary, S^1_+ , S^1_- be two components of ∂M . Then up to homeomorphism, there exists at most two ways of attaching a 2-dimensional 1-handle to M such that the sets $\{\pm 1\} \times D^2$ are attached to S^1_+ .

More precisely, given

$$f,g:\{-1,1\}\times D^1\to S^1_+\cup S^1_-\subseteq \partial M$$

be two embeddings whose image intersect both S^1_+ and S^1_- , then either

$$M \sqcup_f h^1 \cong M \sqcup_g h^1$$

or

$$M \sqcup_f h^1 \cong M \sqcup_{g \circ R} h^1$$

or both, where $R: \{-1,1\} \times D^1 \to \{-1,1\} \times D^1$ is the identity on $\{-1\} \times D^1$ and the reflection $x \mapsto -x$ on $\{+1\} \times D^1$.

proof.

- 1) Can assume that f,g both map $\{-1\} \times D^1$ to S^1_- and $\{+1\} \times D^1$ to S^1_+ since there exists a homeomorphism $h:h^1\to h^1$ that exchanges $\{-1\} \times D^1$ and $\{+1\} \times D^1$
- 2) Can assume that $\operatorname{im}(f) = \operatorname{im}(g)$ follows because $\operatorname{Homeo}^+(S^+)$ acts transitively on single intervals in S^1 and on disjoint pairs.

3) Can assume that

$$g^{-1}\circ f|_{\{-1\}\times D}:\{-1\}\times D^1\to \{-1\}\times D^1$$

is increasing, since there exists a homeomorphism $h':h^1\to h^1$ which restricts to an orientation-reversing homeo on $\{-1\}\times D^1$

4) Can then assume that

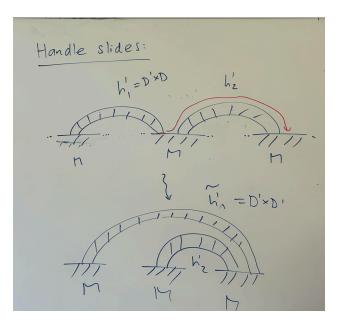
$$g^{-1} \circ f|_{\{-1\} \times D} = \mathrm{id}_{\{-1\} \times D^1}$$

since any increasing homeomorphism of $\{-1\} \times D^1$ is isotopic to $\mathrm{id}_{\{-1\} \times D^1}$, then

$$g|_{\{-1\}\times D} = f|_{\{-1\}\times D}$$

this leaves with 2 possibilities:

- 1) $g^{-1} \circ f \mid_{\{+1\} \times D^1}$ is increasing \Longrightarrow can assume f = g
- 2) $g^{-1} \circ f \mid_{\{+1\} \times D^1}$ is decreasing \Longrightarrow can assume $f = g \circ R$



Note. A handle slide induces a homeomorphism

$$(M \cup h_2^1) \cup h_1^1 \to (M \cup h_2^1) \cup \widetilde{h_1^1}$$

which is the identity except in collar neighborhood of

$$\partial(M \cup h_2^1) \subseteq M \cup h_2^1$$

Remark. Handle slides can also be used to slide 1-handles off of each other

2.6 Orientations

Definition (Orientations). Let S be a space homeomorphic to S^1 . Then an **orientation** of S is an equivalence class of homeomorphisms $f:S^1\to S$ where two such $f,g:S^1\to S$ are equivalent if $g^{-1}\circ f$ is isotopic to id_{S^1} .

Definition. Let M be a 2-dimensional handle body, M_0 be union of all 0-handles. Assume all 1-handles are attached to ∂M_0 and the images of the attaching maps are pairwise disjoint. Then an **orientation on** M is a choice of orientation on the boundary of each handle in M such that for every 1-handle, the attaching map

$$f:(\partial D^1)\times \longrightarrow \partial M_0$$

has the property that $f_{\pm} \coloneqq f|_{\{\pm 1\} \times D^1}$

Example.

- M = annulus has 2 orientations
- $M = M\ddot{o}$ bius strip has no orientation

Lemma. A connected handle body M either admit zero or two orientations.

Theorem. M is non-orientable iff the Möbius strip can be embedded into M

Example. S^2 , T orientable, P, K non-orientable.

Definition (Boundary Connected Sum). M, N connected surfaces with $\partial M \neq \emptyset, \partial N \neq \emptyset$,

$$\begin{split} f_+ : \{+1\} \times D^1 &\longrightarrow \partial M \\ f_- : \{-1\} \times D^1 &\longrightarrow \partial N \end{split}$$

be two embeddings, then the **boundary connected sum** of M and N is the surface

$$M \natural N \coloneqq M \sqcup_{f_1} \bigl(D^1 \times D^1\bigr) \sqcup_{f_2} N$$

Remark. Up to homeomorphism, M
atural N does not depend on the choice of f_+ and f_-

proof.

- If M, N are connected, then $\operatorname{Homeo}(M)$ and $\operatorname{Homeo}(N)$ act transitively on the components of ∂M and ∂N , respectively.
- If S is component of ∂M and ∂N m then $\mathrm{Homeo}^+(S)$ acts transitively on intervals in S.

If S is a component of ∂M where M is a compact surface, then there exists a homeomorphism
 h: M → M which sends S to itself and restricts to an orientation-reversing homeomorphism
 of S.

Definition(Connected Sum). Let M, N be connected surface, possible without boundary, then the **connected sum** of M and N is the surface

$$M \; \sharp \; N \coloneqq M_{(1)} \sqcup_f N_{(1)}$$

where f is a homeomorphism

$$\left(\partial M_{(1)}\right) \smallsetminus \partial M \longrightarrow \left(\partial N_{(1)}\right) \smallsetminus \partial N$$

Remark.

$$\begin{split} M & \ \sharp \ N \cong \left(M_{(1)} \cup N_{(1)} \right) \cup \text{cylinder} \\ & = \left(M_{(1)} \cup N_{(1)} \right) \cup \left(L^1 \cup h^2 \right) \\ & = \left(M_{(1)} & \ \sharp \ N_{(1)} \right) \cup h^2 \end{split}$$

In particular,

$$(M \ \sharp \ N)_{(1)} = M_{(1)} \ \natural \ N_{(1)}$$

Example. $D^2
atural D^2 \cong D^2$

In general, for M compact space with ∂M ,

$$M \natural D^2 \cong M$$

Lemma. $P \sharp P \cong K$ where P is the projective plane and K is the Klein bottle.

proof.

1.
$$K = M \cup M' \cong P_{(1)} \cup P_{(1)} = P \sharp P$$

2.
$$K_{(1)} \cong P_{(1)} \natural P_{(1)} = (P \sharp P)_{(1)} \Longrightarrow K \cong P \sharp P$$

Lemma (Fundamental Lemma of Surface Theory).

where T is the torus, P is the projective plane, and K is the Klein bottle.

Theorem (Classification Theorem). Every closed nonempty connected surface M is homeomorphic to exactly one of the following:

1. *M* orientable

$$T^{(g)} = S^2 \ \sharp \underbrace{T \ \sharp \dots \sharp T}_g (\text{with } g \geq 0)$$

2. M non-orientable

$$P^{(h)} = \underbrace{P \sharp \dots \sharp P}_{h}(\text{with } h \ge 1)$$

Notation:

$$T_{(p)}^{(g)} = T^{(g)} - \{p \text{ open disks with disjoint closures}\}$$

$$P_{(p)}^{(h)} = P^{(h)} - \{p \text{ open disks with disjoint closures}\}$$

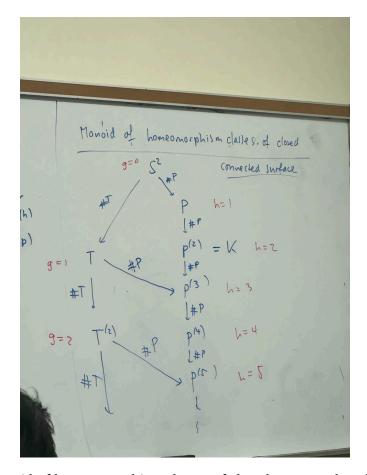
Corollary. Every nonempty compact connected surface M with $p \ge 0$ boundary components is homeomorphic to exactly one of the following:

1.
$$T_{(p)}^{(g)}$$
, with $g \ge 0$

2.
$$P_{(p)}^{(h)}$$
, with $h \ge 1$

Definition.

- g is the **genus** of $T_{(p)}^{(g)}$
- h is the non-orientable genus or crosscap number of $P_{(p)}^{(h)}$



Monoid of homeomorphism classes of closed connected surface

Now prove the Classification Theorem.

proof.

- 1. By Rados's Theorem, can assume *M* is a handle body
- 2. If M has more than one 0-handle, then there must a 1-handle h' connecting two distinct 0-handles, h_1^0, h_2^0
 - $\implies h_1^0 \cup h^1 \cup h_2^0 \cong D^2$
 - \implies can replace $h_1^0 \cup h^1 \cup h_2^0$ be a single 0-handle
 - \implies can reduce the number of zero handles
 - \implies can assume M ahs only one 0-handle
- 3. Can restrict to the case where M has no 2-handles because attacing 2-handle is unique up to homeomorphism
- 4. We may assume

$$M=h^0\cup \left(h^1_1\cup...h^1_n\right)$$

Now use induction on k, the number of 1-handles.

Fact. If M is a compact connected surface, then every permutation of the components of ∂N can be realized by a homeomorphism of N. (Follows from Disk Lemma)

- Base case: if k=0, then $M=h^0\cong D^2=S^2_{(1)}=T^{(0)}_{(1)}$
- Inductive step: Assume k > 0, and let

$$N := h^0 \cup (h^1 \cup ... \cup h^1_{k-1})$$

<u>Case 1</u>: M orientable and h_k^1 is attached to a single component of ∂N . Can assume

$$M\cong N$$
 \natural annulus
$$\cong T_{(p)}^{(g)} \natural S_{(2)}^2$$

$$\cong T_{(p)}^{(g+1)}$$

<u>Case 2</u>: M orientable and h_k^1 is attached to two distinct components of ∂N , then ∂N has at least 2 components. By induction hypothesis,

$$\begin{split} N &\cong T_{(p)}^{(g)} \\ &\cong T_{(p-1)}^{(g)} \natural \, S_{(2)}^2 \\ &\cong T_{(p-1)}^{(g)} \natural \, T_{(1)} \\ &\cong T_{(p-1)}^{(g+1)} \end{split}$$

<u>Case 3</u>: M is non-orientable and h_k^1 is attached to a single boundary component.

$$M=N$$
 \natural annulus $\cong P_{(p)}^{(h)} \ \natural \ S_{(2)}^2 \cong P_{(p+1)}^{(h)}$

or

$$M \cong N \ \natural \ P_{(1)} = P_{(p)}^{(h)} \ \natural \ P_{(1)} = P_{(p)}^{(h+1)}$$

or

$$M \cong T_{(p)}^{(g)} \ \natural \ P_{(1)} \cong P_{(p)}^{(2g+1)}$$

<u>Case 4</u>: M is non-orientable and h_k^1 is attached to two distinct components of ∂N , then ∂N has at least 2 components, $N \cong N' \natural S_{(2)}^2$, then

$$M\cong N' \ \natural \ T_{(1)}\cong P_{(p)}^{(h)} \ \natural \ T_{(1)}\cong P_{(p)}^{(h+2)}$$

or

$$M \cong N' \mid K_{(1)} = T_{(p)}^{(g)} \mid K_{(1)} = P_{(p)}^{(2g+2)}$$

Chapter 3

The Fundamental Group

Definition (Pointed Space). A **pointed space** is a pair (X, x_0) where X is a topological space and the "basepoint" $x_0 \in X$ is a point. The fundamental group is a topological invaraint for pointed spaces.

3.1 Homotopies

Recall. A **path** in *X* is a continuous map

$$f:[0,1]\longrightarrow X$$

Concatenation of Paths:

$$f, g: [0,1] \longrightarrow x$$
 paths with $f(1) = g(0)$

forms new path

$$(f\star g)(s)\coloneqq \begin{cases} f(2s) & \text{if } s\in\left[0,\frac{1}{2}\right]\\ g(2s-1) & \text{if } s\in\left[\frac{1}{2},1\right] \end{cases}$$

Definition (Homotopy). $f,g:X\longrightarrow Y$ be two continuous maps. A **homotopy** from f to g is a continuous map

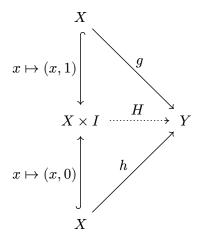
$$H: X \times I \longrightarrow Y$$

such that H(-,0)=f and H(-,1)=g. If such H exists, then f and g are called **homotopic** denoted $f\simeq g$.

Note. Can regard equivalence

$$\{H_t := H(-,t)\}$$

as a continuous family of continuous maps $H_t: X \longrightarrow Y$.



Definition (Path Homotopies). $f, g: I \longrightarrow X$ paths with f(0) = g(0) and g(1) = g(1). f and g are **path homotopic** if there exists a homotopy

$$H:I\times I\longrightarrow X$$

from f to g such that for all $t \in I$,

$$H(0,t) = f(0) = g(0)$$

$$H(1,t) = f(1) = g(1)$$

denoted

$$f \simeq_n g$$

which is an equivalence relation on paths in X. And

$$[f]: \{g \mid g \text{ a path in } X \text{ with } g \simeq_p f \}$$

is the path homotopy class of f.

Proposition. Suppose f(1)=g(0), if $f'\simeq_p f$ and $g'\simeq_p g,$ then $f'*g'\simeq_p f*g.$

proof. Choose path homotopy

$$F:I imes I\longrightarrow X$$
 from f' to f
$$G:I imes I\longrightarrow X$$
 from g' to g

then we can define a path homotopy from f' * g' to f * g:

$$(F*G)(s,t) \coloneqq \begin{cases} F(2s,t) & \text{if } s \in \left[0,\frac{1}{2}\right] \\ G(2s-1,t) & \text{if } s \in \left[\frac{1}{2},1\right] \end{cases}$$

Definition (Loop). Let (X, x_0) be pointed space. A **loop** in X based at x_0 is a path

$$f:I\longrightarrow X$$

such that $f(0) = f(1) = x_0$

Note.

$$\left\{ \text{loops } f: I \longrightarrow X \text{ based at } x_0 \right\} \overset{\text{1:1}}{\longleftrightarrow} \left\{ \text{continuous map } \overline{f}: \left(\frac{I}{\partial I}, \frac{\partial I}{\partial I} \right) \to (x, x_0) \right\}$$

Definition (The Fundamental Group). The **Fundamental Group** of (X, x_0) is the set

$$\begin{split} \Pi_1(X,x_0) \coloneqq \frac{\{\text{loops in } X \text{ based on } x_0\}}{\text{path homotopy}} \\ &= \{[g] \mid g \text{ a loop in } X \text{ based at } x_0\} \end{split}$$

with concatenation of loops defines a binary operation on $\Pi_1(X, x_0)$:

$$\forall [f], [g] \in \Pi_1(X, x_0). [f] \overline{*} [g] := [f * g]$$

Theorem. $\Pi_1(X, x_0)$ is a group with this operation.

proof.

1. $\bar{*}$ is associative

Let $[f], [g], [h] \in \Pi_1(X, x_0)$. WTS:

$$(f*g)*h \simeq_p f*(g*h)$$

$$[0,1] = [f,g,h,h] \qquad [f,f,g,h]$$

then

$$(f * g) * h = (f * (g * h)) \circ k$$

where $k:[0,1]\to[0,1]$ is the PL homeomorphism given by

$$\begin{bmatrix} 0, \frac{1}{4} \end{bmatrix} \longrightarrow \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}$$

and $k \simeq id_{[0,1]}$ via a homotopy that fixes 0 and 1, e.g.

$$k_{t(s)} \coloneqq (1 - t)k(s) + ts$$

follows that

$$\begin{split} (f*g)*h &\simeq_p (f*(g*h)) \circ \mathrm{id}_{[0,1]} \\ &= f*(g*h) \end{split}$$

2. Π_1 has an identify element

Let $e_{x_0}:I\to X$ be the constant path given by

$$\forall s \in I. \ e_{x_0}(s) \coloneqq x_0$$

 $\mathbf{Claim.} \ \forall [f] \in \Pi_1(X,x_0). \ f * e_{x_0} \simeq_o f \simeq_p e_{x_0} * f$

proof. Construct

$$H(s,t) \coloneqq \begin{cases} x_0 & \text{if } t \leq 2s-1 \\ f\left(2\frac{s}{t+1}\right) & \text{if } t \geq 2s-1 \end{cases}$$

3. Π_1 has a inverses

Let $[f] \in \Pi_1(X, x_0)$ and

$$\forall s \in I. \ \overline{f}(s) := f(1-s)$$

Claim. $f*\overline{f} \simeq_p e_{x_0} \simeq_p \overline{f}*f$

proof. Construct

$$H(s,t) \coloneqq \begin{cases} f(2s(1-t)) & \text{if } s \leq \frac{1}{2} \\ \overline{f}((2s-1)(1-t)+t) & \text{if } s \geq \frac{1}{2} \end{cases}$$

is a path homotopy from $f*\overline{f}$ to e_{x_0} . Similarly can construct one from $\overline{f}*f$ to e_{x_0} . \qed Therefore $\Pi_1(X,x_0)$ forms a group. \qed

Theorem (Induced Maps). Let $f:(X,x_0)\longrightarrow (Y,y_0)$ be a continuous map with $f(x_0)=y_0$. The **induced map** is

$$\begin{split} f_*: \Pi_1(X,x_0) &\longrightarrow \Pi_1(Y,y_0) \\ [p] &\longmapsto [f \circ p] \end{split}$$

such that

- 1. f_* is well-defined
- 2. f_* is a group homomorphism:

$$f_*([p][q]) = f_*([p])f_*([q])$$

- 3. $\left(\mathrm{id}_{\Pi_1(X,x_0)}\right)_* = \mathrm{id}_{\Pi_1(X,x_0)}$
- 4. $(f \circ g)_* = f_* \circ g_*$

proof.

- 1. If $H:I\times I\longrightarrow X$ is a path homotopy between p_0 and p_1 , then $f\circ H:I\times I\longrightarrow Y$ is a path homotopy between $f\circ p_0$ and $f\circ p_1$, that is, $[f\circ p]$ depends only on the path homotopy class [p].
- 2. Let $[p], [q] \in \Pi_1(X, x_0)$, then

$$\begin{split} (f\circ (p*q))(s) &= f((p*q)(s)) \\ &= \begin{cases} f(p(2s)) & \text{if } s \in \left[0, \frac{1}{2}\right] \\ f(q(2s-1)) & \text{if } s \in \left[\frac{1}{2}, 1\right] \end{cases} \\ &= ((f\circ p)*(f\circ q))(s) \\ \Longrightarrow f\circ (p*q) &= (f\circ p)*(f\circ q) \\ \Longrightarrow f_*([p][q]) &= f_*([p])f_*([q]) \end{split}$$

3. Follows from the definition

4.
$$(f \circ g)_*([p]) = [(f \circ g) \circ p] = [f \circ (g \circ p)]$$

$$= f_*([g \circ p]) = f_*(g_*([p]))$$

$$= (f_* \circ g_*)([p])$$

$$\Longrightarrow (f \circ g)_* = f_* \circ g_*$$

Remark. Homeomorphic pointed spaces have isomorphic fundamental groups.

Corollary. If f is a homeomorphism, then f_* is group isomorphism.

proof.

$$\begin{split} f:(X,x_0) &\to (Y,y_0) \text{ homeo} \\ \Longrightarrow f^{-1}:(Y,y_0) &\to (X,x_0) \\ \\ \left(f^{-1}\right)_* \circ f_* &= \left(f^{-1} \circ f\right)_* = \left(\mathrm{id}_{X,x_0}\right)_* = \mathrm{id}_{\Pi_1(X,x_0)} \\ \\ f_* \circ \left(f^{-1}\right)_* &= \left(f \circ f^{-1}\right)_* = \left(\mathrm{id}_{Y,y_0}\right)_* = \mathrm{id}_{\Pi_1(Y,y_0)} \end{split}$$

hence f_* and $(f^{-1})_*$ are inverse of each other, and the isomorphism class of $\Pi_1(X, x_0)$ is a topological invariant for pointed spaces.

Example. $\Pi_1(\mathbb{R}^n,x_0)=\left\{\left\lceil e_{x_0}\right\rceil\right\}$

Reason: Any loop $f:[0,1]\to\mathbb{R}^n$ based at $x_0\in\mathbb{R}^n$ is path homotopic to e_{x_0} via "Straight line homotopy":

$$f_{t(s)} \coloneqq (1-t)f(s) + tx_0$$

Example. $X\subseteq \mathbb{R}^n$ convex, $x_0\in X$, then $\Pi_1(X,x_0)=\left\{\left[e_{x_0}\right]\right\}$, proof same as before.

Definition (Simply connected). X is **simply connected** if it is path connected and

$$\forall x_0 \in X. \ \Pi_1(X, x_0) = \{[e]\}\$$

and is independent of the choice of x_0 since x is path connected.

Remark. Any convex subspace of \mathbb{R}^n is simply connected.

Example. $\Pi_1(S^1, x_0) \cong (\mathbb{Z}, +)$

Specifically, let $\omega_n:[0,1]\longrightarrow S^1$ be the loop

$$\omega_{n(s)} \coloneqq e^{2\pi i n S}$$

when n>0, ω_n turns counterclockwise for n loops; when n<0, ω_n turns clockwise for -n loops. Then the map

$$\mathbb{Z} \longrightarrow \Pi_1(S^1,1)$$

$$n \longmapsto [\omega_n]$$

is an isomorphism.

 $\mathbf{Theorem.}\ \Pi_1(X\times Y,(x_0,y_0))\cong \underbrace{\Pi_1(X,x_0)\times \Pi_1(Y,y_0)}_{\text{Direct product of group with}}$

Direct product of group with component-wise multiplication

proof. Let $p_X: X \times Y \to X, p_Y: X \times Y \to Y$ be the projections. Then the isomorphism

$$\Pi_1(X\times Y,(x_0,y_0))\longrightarrow \Pi_1(X,x_0)\times \Pi_1(Y,y_0)$$

is given by

$$[f] \longmapsto \left(\left(p_X\right)_*([f]), \left(p_Y\right)_*([f])\right)$$

inverse:

$$([f_1],[f_2])\longmapsto [(f_1,f_2)]$$

Example. $\Pi_1(T)=\Pi_1\big(S^1\times S^1\big)\cong\Pi_1\big(S^1\big)\times\Pi_1\big(S^1\big)=\mathbb{Z}\times\mathbb{Z}\cong\mathbb{Z}^2$

Theorem. $\Pi_1(S^n,x_0)=\{e\}$ for $n\geq 2$

proof.

Lemma. For $n \ge 2$, every loop p in S^n based at $x_0 \in S^n$ is path homotopic to a loop q that misses $-x_0$, the antipode of x_0 .

proof. Let $p:[0,1]\longrightarrow S^n$ be a loop based at x_0 and assume WLOG that $x_0=(0,...,0,1)\in S^n$, the north pole, and $x_0=(0,...,0,-1)\in S^n$, the south pole. Let the open south hemisphere be

$$V \coloneqq S^n \cap (\mathbb{R}^n \times (-\infty, 0))$$

and

$$U\coloneqq p^{-1}(V)\subseteq [0,1]$$

so U is an open subset of $(0,1)\subseteq [0,1]$ and $U\supseteq p^{-1}(-x_0)$, follows that U is a countable union of disjoint open intervals $I_\alpha\subseteq [0,1]$. The I_α form an open cover for $p^{-1}(-x_0)$, so it's closed and compact, meaning there exist a finite subcover

$$\left\{ I_{\alpha_1},...,I_{\alpha_k} \right\}$$

since the I_{α} are disjoint, none of the I_{α} where $\alpha \neq \alpha_1,...,\alpha_k$ contain points of $p^{-1}(-x_0)$, hence

$$-x_0 \not\in p\Bigg([0,1] \smallsetminus \bigcup_{i=1}^k I_{\alpha_i}\Bigg)$$

it's enough to show that each $p|_{\overline{I_{\alpha_i}}}$ is path-homotopic to a path q_i that misses $-x_0$. Let $I:=I_{\alpha_i}$ for some i and write

$$I = (a, b)$$
 for $0 < a < b < 1$

then

$$\begin{split} p\Big(\overline{I}\Big) &= p([a,b]) \subseteq \overline{p((a,b))} = \overline{p(I)} \\ &\subseteq \overline{V} \\ \Longrightarrow p(a), p(b) \in \partial V = S^{n-1} = S^n \cap (\mathbb{R}^n \times \{0\}) \end{split}$$

after applying a homeomorphism, we can regard $p|_{[a,b]}$ as a path in

$$D^n \cong \overline{V}$$

with endpoints in $\partial D^n = S^{n-1}$. Moreover, since n>2, S^{n-1} is path connected, there exists a path q_i in $\partial D^n = S^{n-1}$ from p(a) to p(b). Finally, $q_i \simeq_p p|_{[a,b]}$ via a straightline homotopy in the convex set $D^n \subseteq \mathbb{R}^n$ and q_i misses the point $0 \in D^n$, which corresponds to the point $x_0 \in \overline{V} \cong D^n$.

Let $[p] \in \Pi_1(S^n, x_0)$ for $n \ge z$. By lemma, we can assume

$$\operatorname{im}(p) \subseteq S^n = \{-x_0\} \cong \mathbb{R}^n$$

then $p \simeq_p e_{x_0}$, meaning $[p] = \left[e_{x_0}\right]$ and

$$\Pi_1(S^n,x_0) = \left\{ \left[e_{x_0} \right] \right\}$$

Remark. S^n is simply connected if $n \geq 2$.

Fact (Poincaré Conjecture; shown by Perelman). Every closed simply-connected 3-manifold $M \neq \emptyset$ is isomorphic to S^3 .

Also true for 2-manifolds:

Fact. Every closed simply-connected 2-manifold $M \neq \emptyset$ is isomorphic to S^2 .

But not true for n-manifolds with $n \geq 4$.

Example. $S^2 \times S^2$ is simply-connected, but not homeomorphic to S^4 .

3.2 Fundamental Group of S^1

Theorem. For $n \in \mathbb{Z}$, let

$$\omega_n: [0,1] \longrightarrow S^1$$
$$s \longmapsto e^{2\pi i n s}$$

Then

$$\Phi: \mathbb{Z} \longrightarrow \Pi_1(S)$$

$$n \longmapsto [\omega_n]$$

is a group isomorphism.

proof. First show that Φ is a homomorphism. NTS: $\Phi(m+n)=\Phi(m)+\Phi(n)$ or $\left[\omega_{m+n}\right]=\left[\omega_m*w_n\right]$. Note that

$$\begin{split} \omega_{m+n}(s) &= e^{2\pi i(m+n)s} \\ \omega_m(s) &= e^{2\pi i ms} \\ \omega_n(s) &= e^{2\pi i ns} = e^{2\pi i(m+ns)} \end{split}$$

define

$$\begin{split} \theta: [0,1] &\longrightarrow \mathbb{R} \\ s &\longmapsto \begin{cases} 2sm & \text{if } s \leq \frac{1}{2} \\ m + (2s-1) & \text{if } s \geq \frac{1}{2} \end{cases} \end{split}$$

then θ is a continuous path in \mathbb{R} from 0 to m+n and

$$(\omega_m*\omega_n)(s)=e^{2\pi i\theta(s)}$$

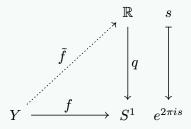
Now prove that $\Phi(n) \coloneqq [\omega_n]$ is a bijection:

Let

$$q: \mathbb{R} \longrightarrow S^1$$
$$s \longmapsto e^{2\pi i s}$$

Fact. q is a covering map

Definition. Given a continuous map $f:Y\to S^1$. A lift of f through q is a continuous map $\tilde{f}:Y\longrightarrow \mathbb{R}$ such that $q\circ \tilde{f}=f$. The diagram



Commutes.

Example. $\omega_n(s)=e^{2\pi i s}=q(ns)\in S^1$, then $\widetilde{\omega_n}(s)\coloneqq ns\in\mathbb{R}$ is a lift of ω_n through $q:\mathbb{R}\longrightarrow S^1$.

Lemma (Unique Path Lifting Property, UPLP). If $p: I \to S^1$ is a path and $\widetilde{x_0} \in q^{-1}(p(0))$, then there exists a unique lift $\tilde{p}: I \to \mathbb{R}$ of p through q such that $\tilde{p}(0) = \widetilde{x_0}$.

proof. $q:\mathbb{R}\to S^1$ given by $q(s):=e^{2\pi i s},\ p:[0,1]\to S^1$ path with $x_0:=p(0),\ \widetilde{x_0}\in q^{-1}(x_0).$ WTS: there exists a unique path $\tilde{p}:[0,1]\to\mathbb{R}$ such that $\tilde{p}(0)=\widetilde{x_0}$ and $q\circ\tilde{p}=p.$ Assume WLOG that $x_0=1\in S^1.$ Then $q^{-1}(x_0)=q^{-1}(1)=\mathbb{Z}\subseteq\mathbb{R}.$ Can assume WLOG that $\widetilde{x_0}:=0\in\mathbb{R}.$ Write

$$S^1 = U \cup V$$

where $U = S^1 \setminus \{1\}$ and $V = S^1 \setminus \{-1\}$, then

$$q^{-1}(U) = \mathbb{R} \smallsetminus q^{-1}(1) = \mathbb{R} \smallsetminus \mathbb{Z} = \bigsqcup_{k \in \mathbb{Z}} (k, k+1)$$

$$q^{-1}(V) = \mathbb{R} \smallsetminus q^{-1}(-1) = \mathbb{R} \smallsetminus \frac{1}{2} + \mathbb{Z} = \bigsqcup_{k \in \mathbb{Z}} \left(k - \frac{1}{2}, k + \frac{1}{2}\right)$$

Now let $p:[0,1]\longrightarrow S^1$ be a path with $p(0)=1=:x_0$. Then $p^{-1}(U)\cup p^{-1}(V)$ is an open cover of [0,1], which has Lebesgue number $\delta>0$ for this cover. If we choose $n>\frac{1}{\delta}$ then for i=1,...,n, each $\left[\frac{i-1}{n},\frac{1}{n}\right]$ is in $p^{-1}(U)$ and in $p^{-1}(V)$. p maps each $\left[\frac{i-1}{n},\frac{1}{n}\right]$ to U or V or both, we will show that

$$\forall i=0,...,n. \; \exists \text{ a unique lift } \tilde{p_i} \text{ of } p|_{[0,\frac{i}{n}]}. \; \tilde{p}(0)=0 \in \mathbb{R}$$

induct on *i*:

- i = 0: Define $\tilde{p_0}(0) := 0 \in \mathbb{R}$
- i>0: Assume we have already constructed the lift $\widetilde{p_{i-1}}$ of $p|_{[0,\frac{i-1}{2}]}$. By construction,

$$p\Big(\Big[\frac{i-1}{n},\frac{i}{n}\Big]\Big)\subseteq U \text{ or } \subseteq V$$

for simplicity, assume

$$p\bigg(\bigg[\frac{i-1}{n},\frac{i}{n}\bigg]\bigg)\subseteq U$$

let $k \in \mathbb{Z}$ be such that

$$\widetilde{p_{i-1}}\bigg(\frac{i-1}{n}\bigg)\in (k,k+1)\subseteq q^{-1}(U)$$

<u>Note</u>: q restricts to homeomorphism $(k, k+1) \rightarrow U$ so we can define

$$\tilde{p_i} \coloneqq \begin{cases} \widetilde{p_{i-1}} & \text{on } \left[0, \frac{i-1}{n}\right] \\ \left(q|_{(k,k+1)}\right)^{-1} \circ p|_{\left[\frac{i-1}{n}, \frac{1}{n}\right]} & \text{on } \left[\frac{i-1}{n}, \frac{i}{n}\right] \end{cases}$$

Easy to see: $\tilde{p_i}$ is continuous and

$$q\circ \tilde{p_i}=p|_{\left[0,\frac{i}{n}\right]}$$

then $\tilde{p_i}$ is a lift of $p|_{[0,\frac{i}{n}]}$ through q.

<u>Uniqueness</u>: Suppose $\overline{p_i}$ is another lift of $p|_{[0,\frac{i}{n}]}$:

- On $[0, \frac{i-1}{n}]$, induction implies $\tilde{p_i} = \overline{p_i}$ On $[\frac{i-1}{n}, \frac{i}{n}]$, the lifting property implies

$$q\circ \overline{p_i} = q\circ \tilde{p_i}$$

Moreover, $\tilde{p_i}$ and $\overline{p_i}$ both map $\left[\frac{i-1}{n},\frac{i}{n}\right]$ to (k,k+1) (can be seen since they agree at $\frac{i-1}{n}$ and since $\overline{p_i}$ must map $\left[\frac{i-1}{n},\frac{i}{n}\right]$ to a path components of $q^{-1}(U)$, follows that $\overline{p_i}=\tilde{p_i}$ on $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ because q is injective on (k, k+1).

Lemma (Path Homotopy Lifting Property, PHLP). If $H:I\times I\to S^1$ is a homotopy and \widetilde{H}_0 is a lift through q of $H|_{I\times\{0\}}$, then there exists a lift \tilde{H} of H through q such that $\tilde{H}|_{I\times\{0\}}=$ H_0 . Moreover, if H is a path homotopy, so is H.

proof. WTS: There exists a lift $\tilde{H}: I \times X \to \mathbb{R}$ of H extending \widetilde{H}_0 . To define \tilde{H} , divide $I \times I$ I into squares of the form

$$I_{ij} \coloneqq \left[\frac{i-1}{n}, \frac{i}{n}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right]$$

where n is large enough so that each $H(I_{ij})$ is in U or in V. For each i=1,...,n, use a local inverse of $q:\mathbb{R}\to S^1$ to extend the given lift $\widetilde{H_0}$ to lift $\widetilde{H_{i,1}}$ of $H|_{I_{i,1}}$.

Note: $I_{i,1} \cap I_{i+1,1} = \{i\} \times \left[0, \frac{1}{n}\right] \cong [0,1]$

- $\Longrightarrow \widetilde{H_{i,j}}, \widetilde{H_{i+1,j}}$ must agree on $I_{i,1} \cap I_{i+1,1}$ by the UPLP.
- \implies By the piecing lemma, we obtain a well-defined lift of $H|_{I\times \left[0,\frac{1}{n}\right]}$. Now proceed inductively to fill up the square, get a lift \tilde{H} of H.

Exercise: If H is a path homotopy, then so is \tilde{H} .

Remark. Given

- path p_0, p_1 in S^1 with $p_0 \simeq_p p_0$
- lifts $\tilde{p_0}$, $\tilde{p_1}$ through q with $\tilde{p_0}(0) = \tilde{p_1}(0)$

Then $\tilde{p_0} \simeq_p \tilde{p_1}$. In particular, $\tilde{p_0}(1) = \tilde{p_1}(1)$.

Now suppose $\Phi(m) = \Phi(n)$

$$\implies [\omega_m] = [\omega_n]$$

$$\implies \omega_m \simeq_p \omega_n$$

$$\implies$$
 By "PHLP" $\widetilde{\omega_m} \simeq_p \widetilde{\omega_n}$ where $\widetilde{\omega_m}(s) = ms, \widetilde{\omega_n}(s) = ns$

$$\implies \widetilde{\omega_m}(1) = \widetilde{\omega_n}(1)$$

$$\implies m = n$$

so Φ is injective. Now let $[p] \in \Pi_1(S^1,1)$, then p is a loop in S^1 based $x_0 = 1 \in S^1$. Let $\tilde{p}: I \to \mathbb{R}$ be the lift of p staring at $\widetilde{x_0} := 0 \in \mathbb{R}$,

$$\implies q \circ \tilde{p} = p$$
 (since \tilde{p} is a lift)

$$\implies q(\tilde{p}(1)) = q^{-1}(1) = \mathbb{Z}$$

$$\implies \tilde{p}(1) \in q^{-1}(1) = \mathbb{Z}$$

$$\implies \tilde{p}(1) = n \text{ for an integer } n \in \mathbb{Z}$$

$$\implies \widetilde{p} \wedge \widetilde{\omega_n}$$
 are both paths in $\mathbb R$ from 0 to n

$$\implies \tilde{H}(s,t)\coloneqq (1-t)\tilde{p}(s)+t\widetilde{\omega_n}(s)\in\mathbb{R} \text{ is a path homotopy from } \tilde{p} \text{ to } \widetilde{\omega_n}$$

 $\implies q \circ \tilde{H}$ is a path homotopy from ω_n

$$\implies p \simeq_p \omega_n$$

$$\implies [p] = [\omega_n] = \Phi(n)$$

$$\implies [p] \subseteq \operatorname{im}(\Phi(n))$$

So Φ is surjective, hence an isomorphism.

Fact. $p:I\longrightarrow S^1$ path, $\widetilde{x_0}\in q^{-1}(p(0))$, then there exists a unique lift $\widetilde{p}:I\longrightarrow \mathbb{R}$ of p through q such that $\widetilde{p}(0)=\widetilde{x_0}$

3.3 Dependence on the base point

X space, $x_0, x_1 \in X$ be points in same path component. Let $\alpha: [0,1] \to X$ be path from x_0 to x_1 . Can define a map

$$\alpha_*:\Pi_1(X,x_1)\longrightarrow \Pi_1(X,x_0)$$

$$[p]\longmapsto [\alpha*p*\overline{\alpha}]$$

where p is a loop based at x_1 .

Fact.

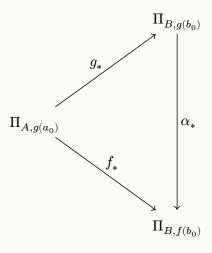
- α_* is well-defined ($[\alpha * p * \overline{\alpha}]$ depends only on [p])
- α_* is an isomorphism with inverse $(\alpha_*)^{-1} = (\overline{\alpha})_*$
- If α, β are composable paths, then $(\alpha * \beta)_* = \alpha_* \circ \beta_*$
- α_* depends only on $[\alpha]$

So: If X is path connected, then the isomorphism class of $\Pi_1(X,x_0)$ is independent of the choice of x_0 .

Proposition . Let $f,g:A\to B$ be homotopic continuous maps, with homotopy $F:A\times I\to B$. For $a_0\in A$, let

$$\alpha(t) \coloneqq F(a_0, t)$$

then the following commutes:



proof. See book, page 228.

3.4 Homotopy invariance of Π_1

Definition (Homotopy Equivalence). X,Y space, $f:X\to Y$ continuous. f is a **homotopy** equivalence if there exists a continuous map $g:Y\to X$ such that

$$g \circ f \simeq \operatorname{id}_X$$
 and $f \circ g \simeq \operatorname{id}_Y$

In this case, g is called a **homotopy inverse** of f and X and Y are called **homotopy equivalent**, denoted

$$X \simeq Y$$

Example. Every homeomorphism is a homotopy equivalence.

Definition (Contractible). *X* is Contractible if

$$X \simeq \{1 \text{ point}\}$$

Easy to see:

$$X$$
 Contractible \iff id_X $\simeq c_{x_0}$

where

$$c_{x_0}: X \longrightarrow X$$

$$x \longmapsto x_0$$

Example. \mathbb{R}^n is contractible because

$$\mathrm{id}_{\mathbb{R}^n} \simeq c_0$$

via the homotopy

$$H(x,t) := (1-t)x$$
 where $x \in \mathbb{R}^n, t \in [0,1]$

Like wise, every convex $A \subseteq \mathbb{R}^n \neq \emptyset$ is contractible.

Example.

$$\mathbb{R}^2 - \{0\} \cong S^1 \times (0, \infty) \simeq S^1 \times \{1 \text{ point}\} \cong S^1$$

Likewise

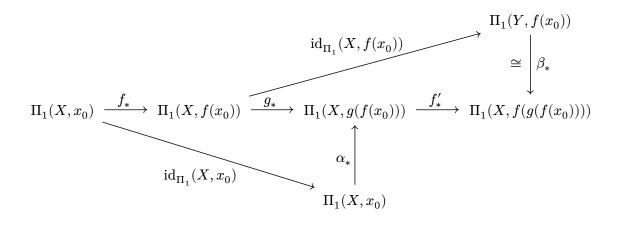
$$\mathbb{R}^n - \{0\} \simeq S^{n-1}$$

Theorem. If $f: X \to Y$ is a homotopy equivalence, then

$$f_*:\Pi_1(X,x_0)\longrightarrow\Pi_1(Y,f(x_0))$$

is an isomorphism for any $x_0 \in X$.

proof. Let $g: Y \to X$ be homotopy inverse for f. Consider four fundamental groups:



Then

$$\begin{array}{c} g_*\circ f_*=\underbrace{\alpha_*}_{\mathrm{iso}}\Longrightarrow g_* \text{ injective} \\ \\ f_*\circ g_*=\underbrace{\beta_*}_{\mathrm{iso}}\Longrightarrow f_* \text{ injective} \\ \\ g_* \text{ invertible}\Longrightarrow g_*\circ f_*=\alpha_*\Longrightarrow f_* \text{ invertible} \end{array}$$

3.5 Degree

Definition (Degree). $f: S^1 \longrightarrow S^1$ continuous. Consider

$$[0,1] \xrightarrow{q|_{[0,1]}} S^1 \xrightarrow{f} S^1$$

$$f' := f \circ g|_{[0,1]}$$

Let $\tilde{f}':[0,1]\to\mathbb{R}$ be a lift of f' through g, then the **degree** of f is defined by

$$\deg(f)\coloneqq \tilde{f}'(1)-\tilde{f}'(0)$$

Note. This independent of the chosen lift \tilde{f}' of f' because any two lifts differ by

$$\tilde{f}' \sim \tilde{f}' + n \text{ for } n \in \mathbb{Z}$$

Proposition. if $f,g:S^1\longrightarrow S^1$ are homotopic continuous maps, then

$$\deg(f) = \deg(g)$$

proof. Let $F: S^1 \times I \longrightarrow S^1$ be a homotopy from f and g. Define

$$F': I \times I \longrightarrow S'$$

by $F' := F \circ (g|_I \times \mathrm{id}_I)$. Let \tilde{f}' be lift of f' and \tilde{F}' be a lift of F' extending \tilde{f}' .

By definition of degree:

$$\begin{split} \deg(f) &= \tilde{F}'(1,0) - \tilde{F}'(0,0) \\ \deg(g) &= \tilde{F}'(1,1) - \tilde{F}'(0,1) \\ \deg(f) - \deg(g) &= \tilde{F}'(1,0) - \tilde{F}'(0,0) - \left(\tilde{F}'(1,1) - \tilde{F}'(0,1)\right) \\ &= \tilde{h}(0) + n - \tilde{h}(1) + n - \left(\tilde{h}(0) - \tilde{h}(1)\right) \\ &= 0 \Longrightarrow \deg(f) = \deg(g) \end{split}$$

Example. Use this to show

$$\deg(f) = n \Longleftrightarrow f \simeq \text{the map } z \in S^1 \longmapsto z^n \in S'$$

Corollary. if $f, g: S^1 \longrightarrow S^1$ continuous, then

$$\deg(f \circ g) = \deg(f) \deg(g)$$

proof. Let $m := \deg(f)$, $n := \deg(g)$, then

$$f\simeq z^m \text{ and } g\simeq z^n$$

$$f\circ g\simeq \left(z^n\right)^m=z^{nm}$$

$$\deg(f\circ g)=nm=mn=\deg(f)\deg(g)$$

Corollary. if $f: S^1 \longrightarrow S^1$ is a homomorphism, then

$$\deg(f) = \pm 1$$

in fact, if f is orientation preserving then deg(f) = 1; if f is orientation reversing then deg(f) = -1.

The Fundamental Group

proof.

$$\begin{split} \deg(f)\deg(g) &= \deg\bigl(f\circ f^{-1}\bigr) \\ &= \deg(\mathrm{id}_{S^1}) \\ &= \deg(z^1) \\ &= 1 \end{split}$$

hence $deg(f) \in \mathbb{Z}^X = \{\pm 1\}.$

Proposition. If $f: S^1 \longrightarrow S^1$ extends to a continuous map $F: D^2 \longrightarrow S^1$, then

$$\deg(f)=0$$

proof. Follows because in this case

$$f \simeq \text{constant map} \simeq (z \longmapsto z^0)$$

since D^2 is contractible.

Note. Recall that

$$\begin{split} \mathbb{R}^2 - \{0\} &\cong S^1 \\ \Longrightarrow \Pi_1(\mathbb{R}^2 - \{0\}) &\cong \Pi_1(S^1) \cong \mathbb{Z} \end{split}$$

can also be see as follows:

$$\begin{split} \Pi_1 \big(\mathbb{R}^2 - \{0\} \big) & \cong \Pi_1 \big(S^1 \times (0, \infty) \big) \\ & \cong \Pi_1 \big(S^1 \big) \times \Pi_1 ((0, \infty)) \\ & \cong \Pi_1 \big(S^1 \big) \cong \mathbb{Z} \end{split}$$

but $\Pi_1(\mathbb{R}^n-\{0\})=\Pi_1(S^{n-1})=0$ for n>2

Definition. Let $f: S^1 \longrightarrow \mathbb{R}^2 - \{0\}$ be continuous, can define $\tilde{f}: S^1 \longrightarrow S^1$ by

$$\tilde{f}(x) \coloneqq \frac{f(x)}{\|f(x)\|}$$

can define

$$\underbrace{\deg(f)}_{\text{"winding number"}} \coloneqq \deg\Big(\widetilde{f}\Big)$$

intuitively, how many times f wind around 0.

3.5.1. Applications

Definition (Retraction) . Let X space, $A \subseteq X$ subspace. A **retraction** from X to A is a continuous map $r: X \longrightarrow A$ such that

$$r|_A = \mathrm{id}_A$$

Theorem. There exists no retraction $r: D^2 \longrightarrow S^1$.

proof. Suppose such retraction r exists, then

$$\deg(r|_{S^1}) = \deg(\mathrm{id}_{S^1}) = 1$$

but also $r|_{S^1}$ extends to the entire D^2 , namely r, so $\deg(r|_{S^1})=0$. Contradiction. \square

Theorem (Fundamental Theorem of Algebra). Let

$$P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$$

be a complex polynomial with n > 0. Then P has a zero in \mathbb{C} .

proof. Let

$$M \coloneqq \max\{|a_0|,...,|a_{n-1}|\}$$

and choose $k \ge 1$. Then for $z \in kS^1$, the circle around 0 of radius k,

$$P(z) = z^n \left(1 + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right) = z^n (1 + b(z)) \neq 0$$

where $|b(z)| < \frac{1}{2}$ since $z \in kS^1$. So $f := P|_{kS^1}$ is a map

$$f:kS^1\longrightarrow \mathbb{C}-\{0\}$$

Moreover, f is homotopic to $z^n|_{kS^1}$ via

$$H(z,t) := z^n (1 + (1-t)b(z)) \neq 0$$

$$\Longrightarrow \deg(f) = \deg(z^n|_{kS^1}) = n > 0$$

Now suppose P has no zeroes. Then P takes values in $\mathbb{C} - \{0\}$, so f extends to the map

$$P|_{kD^2}: kD^2 \longrightarrow \mathbb{C} - \{0\} \Longrightarrow \deg(f) = 0$$

Contradiction.

Remark. Suppose $0 < k_1 < k_2$ are such that

$$\deg(P|_{k_1S^1}) \neq \deg(P|_{k_2S^1})$$

Then P must have a zero in $\{z \in \mathbb{C} \mid k_1 < |z| < k_2\}$.

Definition. $f:I\to S^1$ continuous such that f(1)=-f(0). Can define

$$\deg(f)\coloneqq \tilde{f}(1)-\tilde{f}(0)\in\frac{1}{2}+\mathbb{Z}$$

where $\tilde{f}: I \longrightarrow \mathbb{R}$ is a lift of f.

Theorem. There exists no continuous map $f:S^2 \to S^1$ such that $\forall x \in S^2$. f(-x) = -f(x)

proof. Suppose such an f exists, then

$$\deg(f|_{S^1}) = 0$$

since $f|_{S^1}$ extends to the northern or southern hemisphere. But

$$S^1 = I_+ \cup I_-$$

then

$$\begin{split} \deg(f|_{S^1}) &= \deg \left(f|_{I_+} \right) + \deg \left(f|_{I_-} \right) \\ &= 2 \deg \left(f|_{I_+} \right) \text{ since } f(-x) = -f(x) \\ &= 2 \left(n + \frac{1}{2} \right) \\ &= 2n + 1 \neq 0 \end{split}$$

Theorem (Brouwer). Every continuous map $f:D^2\longrightarrow D^2$ has a fixed point x with f(x)=x.

proof. Suppose f has no fixed point, and define

$$g:D^2\longrightarrow \partial D^2$$

with g(x) be the intersection of line xf(x), one can check g is continuous and $g|_{\partial D^2}=\mathrm{id}_{\partial D^2}$, follows that g is a retraction from D^2 to ∂D^2 . By no-retraction theorem, contradiction.

Note. Not true if D^2 is replaced by $D^2 \setminus \partial D^2 \cong \mathbb{R}^2$.

3.6 Seifert-van Kampen Theorem

Definition (Word). Let G_1 , G_2 be groups. A **word** in G_1 and G_2 is a finite sequence

$$(w_1, w_2, ..., w_n)$$
 where $w_i \in G_1$ or G_2

Definition (Free Product). The **free product** of G_1 and G_2 is the set

$$G_1*G_2 \coloneqq \frac{\{\text{words in } G_1 \text{ and } G_2\}}{\sim}$$

where \sim is generated by:

• If w_i and w_{i+1} belong to the same group, then

$$(..., w_i, w_{i+1}, ...) \sim (..., w_i w_{i+1}, ...)$$

• If w_i is the identity element of G_1 or G_2 , then

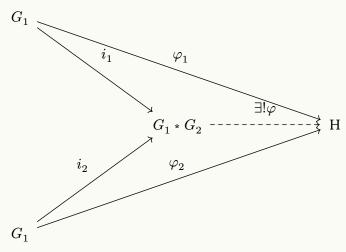
$$(..., w_{i-1}, w_i, w_{i+1}, ...) \sim (..., w_{i-1}, w_{i+1}, ...)$$

Note . $G_1 * G_2$ is a group with multiplication given by concatenation.

Theorem (Univeersal Property). Given homomorphism $\varphi_i:G_i\longrightarrow H,\ i=1,2,$ there exists a unique homomorphism

$$\varphi: G_1 * G_2 \longrightarrow H$$

that extends φ_1 and φ_2 :



where $i_j(w) := [(w)]$, $w \in G_j$.

Example.

$$F_K \coloneqq \underbrace{\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}}_{k < \infty} = \mathbb{Z}^{*k}$$

is a **free group** on k generators.

Proposition. Any group H with $k < \infty$ generators can be written as

$$H \cong \frac{F_k}{N}$$

for a normal subgroup $N \unlhd F_k$.

proof. Let $h_1, ..., h_k$ be generators of H, and define

$$\Phi_i: \mathbb{Z} \longrightarrow H$$
$$n \longmapsto (h_i)^n$$

The Φ_i induce a surjective map $\varphi:\mathbb{Z}^{*k}\longrightarrow H.$ Define $N:=\ker(\varphi)$, then

$$H \cong \frac{\mathbb{Z}^{*k}}{\ker(\varphi)} = \frac{F_k}{N}$$

Remark. *N* is the **set of relations**.

Definition (Group Presentation). If H is finitely generators $h_1, ..., h_j$, then

$$H \cong \langle h_1, \, ..., \, h_k \mid N \rangle$$

If N is also finitely generated as a normal subgroup of F_k by elements $r_1, ..., r_l$, then write

$$H \cong \langle h_1, ..., h_k \mid r_1, ..., r_k \rangle$$

In this case, H is finitely presented.

Note. Iff $k_1 \neq k_2$, then

$$F_{k_1} \not\cong F_{k_2}$$

proof. Follows because the abelianizations of F_{k_1} and F_{k_2} are \mathbb{Z}^{k_1} and \mathbb{Z}^{k_2} and

$$\mathbb{Z}^{k_1} \not\cong \mathbb{Z}^{k_2}$$

Theorem (Seifert-van Kampen). Let X be space, $X = A \cup B$ where $A, B \subseteq X$ are open and $A \cap B$ is path-connected. Pick $x_0 \in A \cap B$ and consider

$$\begin{array}{cccc} \Pi_1(A\cap B,x_0) & \xrightarrow{& \psi_A &} & \Pi_1(A,x_0) \\ \psi_B & & & & \downarrow \varphi_A \\ & & & & \downarrow \varphi_B & & \downarrow \varphi_A \\ & & & & & & & \downarrow \varphi_A \end{array}$$

$$\Pi_1(B,x_0) & \xrightarrow{& \varphi_B &} & \Pi_1(X,x_0)$$

Where all maps are induced by inclusions. Then the homeomorphism equation

$$\varphi:\Pi_1(A,x_0)*\Pi_1(B,x_0)\longrightarrow\Pi_1(X,x_0)$$

induced by φ_A and φ_B is surjective and

$$\ker(\varphi) = \left\{ \begin{aligned} &\text{the smallest normal subgroup} \\ &\text{containing all } \psi_A(\gamma)\psi_B(\gamma)^{-1} \\ &\text{for all } \gamma \in \Pi_1(A \cap B, x_0) \end{aligned} \right\}$$

Note. So:

$$\Pi_1(X,x_0) \cong \frac{\Pi_1(A,x_0) * \Pi_1(B,x_0)}{(\forall \gamma \in \Pi_1(A \cap B,x_0) \psi_A(\gamma) = \psi_B(\gamma).}$$

Special cases:

1. X, A, B as before. If $A \cap B$ is simply connected, then

$$\Pi_1(X,x_0)\cong\Pi_1(A,x_0)*\Pi_1(B,x_0)$$

Application

 $(X, x_0), (Y, y_0)$ pointed spaces, then the "wedge sum" of X and Y

$$X \vee Y \coloneqq \frac{X \sqcup Y}{x_0 \sim y_0}$$

Let $z_0 \coloneqq \overline{x_0} = \overline{y_0} \in X \vee Y$ and suppose:

- x_0, y_0 are closed in X, Y, respectively
- x_0, y_9 have open neighborhoods in X, Y, respectively, which deformation retract to x_0, y_0 , then

$$\Pi(X\vee Y,z_0)\cong\Pi_1(X,x_0)*\Pi_1(Y,y_0)$$

Definition (Deformation retraction). A **deformation retraction** of X to $A \subseteq X$ is a homotopy

$$H: X \times X \longrightarrow X$$

such that

- $\forall x \in X. \ H(x,0) = x$
- $\forall x \in X. \ H(x,1) \in A$
- $\forall x \in A. \ \forall t \in I. \ H(x,t) = x$

Example.

• $\Pi_1(S^1 \vee S^1) \cong \mathbb{Z} * \mathbb{Z}$. More generally:

$$\Pi_1(S^1 \vee S^1 \vee ... \vee S^1) \cong \mathbb{Z}^{*k} = F_k$$

• X, A, B as in SvK. If A and B are simply connected, then so is X. Follows because

$$\Pi_1(X,x_0) \cong \frac{\Pi_1(A,x_0) * \Pi_1(B,x_0)}{\dots} = 0 * 0 = 0$$

can be used to show that $\Pi_1(S^n) = 0$ for n > 1.

• X, A, B as in SvK, and $\Pi_1(B, x_0) = 0$. Then

$$\Pi_1(X,x_0)\cong \frac{\Pi_1(A,x_0)}{N}$$

where N is the normal subgroup generated by the image of

$$\psi_A: \Pi_1(A\cap B, x_0) \longrightarrow \Pi_1(A, x_0)$$

Example . $X=P=M\cup D^2.$ $A=\mathrm{nbhd}(M)\subseteq P$ and $B=\mathrm{nbhd}(D^2)\subseteq P,$ then $\Pi_1(B,x_0)=0.$ Follows

$$\Pi_X = \frac{\Pi_1(M)}{\Pi_1(\partial M)} = \frac{\mathbb{Z}\langle \gamma \rangle}{2\gamma = 0} = \frac{\mathbb{Z}}{2\mathbb{Z}}$$

3.7 Fundatmental groups of surfaces

3.7.1. Surfaces with $\partial M \neq \emptyset$ **Claim.**

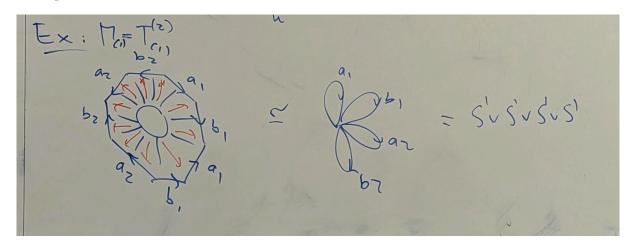
$$\Pi_1\Big(T_{(1)}^{(g)}\Big)\cong \mathbb{Z}^{2g}=F_{2g}$$

$$\Pi_1\Big(P_{(1)}^{(h)}\Big)\cong \mathbb{Z}^h=F_h$$

proof. Start with a closed surface $M=T^{(g)}$ or $M=P^{(k)}$ and realize it as a polygon with identified edges. Poke a hold in the middle of the polygon to get $M_{(1)}$. The result is homotopic to

$$\underbrace{S^1 \cup \ldots \cup S^1}_k \text{ where } k = 2g \text{ or } k = h$$

Example.



3.7.2. Surface without boundary

Ley M be closed connected surface. Poke a hold and put it back in.

$$M = A \cup B$$
 where $A = \text{nbhd}(M_{(1)})$ and $B = \text{nbhd}(D^2)$

follows that

$$\begin{split} \Pi_1(M) &\cong \Pi_1\left(M_{(1)}\right) * \overbrace{\Pi_1\left(D^2\right)}^{=\ 0} \\ &= \frac{\Pi_1\left(M_{(1)}\right)}{\Pi_1\left(\partial M_{(1)}\right)} = \frac{F_k}{N} \end{split}$$

where N is generated by the image in $\Pi_1 \Big(M_{(1)} \Big)$ of $\Pi_1 \Big(\partial M_{(1)} \Big).$

 $M=T^{(g)}$

$$\Pi_1(M) = \left\langle a_1, \, b_1, \, ..., \, a_g, \, b_g \, \middle| \, \sum_{i=1}^g [a_i, b_i] \right\rangle$$

where $\left[a_{i},b_{i}\right]=a_{i}b_{i}a_{i}^{-1}b_{i}^{-1}$ be the commutator.

 $MP^{(h)}$

$$\Pi_1(M) = \left\langle a_1, \, ..., \, a_n \mid a_{1_1^2} a_2^2 ... a_n^2 \right\rangle$$

Definition (Abelianization Π_1). Let (X, x_0) path connected.

$$\Pi_1(X,x_0)_{\mathrm{ab}} \coloneqq \frac{\Pi_1(X,x_0)}{N}$$

where N is the group generated by all commutators.

Definition (First Betti Number). Suppose X is path connected and $x_0 \in X$, $\Pi(X, x_0)_{ab}$ has finite rank, then the **first Betti number** of X is

$$b_1(X)\coloneqq \operatorname{rank}\Pi_1(X,x_0)_{\operatorname{ab}}$$

Theorem. M a connected 2-dim handlebody with $\partial M \neq \varphi$, then

$$X(M) = 1 - b_1(M)$$

can be shown without using that X(M) is a topo invariant.