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Chapter 1

Basic Point Set Topology

1.1 Real
Definition (Open balls). z € R",r > 0, B(z,r) := {y € R" | d(z,y) < r}

Definition (Open set). u C R™ is open if every z € u an interior point of v, meaning 3r >
0. B(z,r) C u.

Remark. r-balls are open.

Theorem (Continuity). Let f: R*¥ — R!. f is continuous iff for every open set v C R!, the
preimage f~!(v) is open in R'.

proof.

* “=7” skipped

* “«<” Suppose preimages of opensets are open, and let z € R¥ and ¢ > 0. Then B(f(z),¢) is
open in R, so by assumption,

Y (B(f(z),¢e)) is open in R¥

= r is an interior point of f~!(B(f(z),¢))
= 36> 0. B(z,8) C f1(B(f(z),¢))

= ¢-6 condition holds at z

= f is continuous at x

= fis continuous on all of R*

Definition. X C R*, Y C R! subsets, f : X — Y. f is continuous at z € X if
Ve >0.35 > 0. f(Bx(z,8)) C By (f(x),¢)

where By (z,0) := B(z,0) N X and By (y,¢) := B(y,e) NY.
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Definition. X C R, U C X subset. U is open in X if there exists an open set U’ C R"
such that

U=U'nX
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Example. Let
X =1[0,2] x [0,2]
U={(z1,25) € X | 2 + 23 <1}
U is open in R? because U = B((0,0),2) N X.
Example. For every X C R™, X is open in X because X = X NR". But in geenral, X C R" is not

open in R™.

Theorem. Let X CR¥, Y CR!, f: X — Y. f is continuous iff for every V C Y that’s open
in Y, the preimage f~!(V) is open in X.

1.2 Metric Spaces

Definition. X any set. A distance function or metric on X is a map
d: X x X — [0,inf)

such that

M1) d(z,y) =0<=z=y

M2) d(z,y) = d(y, z)

M3) d(z,z) < d(z,y) + d(y, z) (triangle inequality)

Definition (Metric space). (X, d) is a metric space if d is a metric on X.

Example. (R",d) is a metric where d is the Euclidean distance, i.e. d(z,y) = |z — y|.
Example. (R",d’) where d’ = 2d is also a metric space.

Example (Discrete metric). X any set, d = dy;,.c Where

0 z=y
ddiscrete(x,y) = 1 =z ?é y

(X, dyiserete) 18 called the discrete metric space.
Example. (X, d) any metric space, Y C X subset, we can restrict d to a map
dly 1Y xY — [0, inf)
then (Y, d|y ) is a metric space, called a (metric) subspace of (z, d) and d|y called induced metric.

Example. S is a subspace in (R?, dp, ), then (S, dg,q|g) is @ metric space.
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Example. Let V be a real vector space. Anorm on V isamap |.| : V — [0, inf) such that
(ND) |z|=0<=2=0

(N2) |ez| = [e] [«]

(N3) [z +y[ < |l + [yl

e.g.,onV =R2?,
* Euclidean norm: |(z, x,)| = /2% + 3

* Max norm: |(zy,z,)| = max(|z,|, |z,])
e Sum norm: |[(z{,x,)|| = |z{| + |z5]

Easy to see: If ||.| is @ norm on V, then d(z,y) = | — y| is a metric on V, meaning any normed
vector space is a metric space.

Definition (Open balls). Let (X, d) be metric space, z € X, r > 0. The open d-r-ball centered
at x is the set

By(z,r) ={y € X | d(z,y) <7}

Definition (Open set). Let (X, d) be metric space. A subset U C X is open if every z € U is
an interior point of U, meaning

Ir > 0. By(z,r) CU

Definition (Continuity). Let (X, d), (Y,d’) be metric spaces, f: X — Y. f is continuous at
x € X if

Ve > 0.38 > 0. f(By(z,6)) C By (f(z),¢)

Theorem. Let (X,d), (Y,d’) be metric spaces, f: X — Y. f is continuous iff the preimage
of d’-open set V C Y is d-open in X.

Theorem. Let (X, d) be metic space

1. @, X are open (in X)

2. the union of any collection of open sets in X is open

3. the intersection of any finite collection of open sets in X is open

proof.

1. @ is open because it contains no non-interior points. X is open because every B,(z,r) is
contained in X.

2. Suppose the sets U;,i € I are open in X, and z € |JU,, then 3i € I. x € U,, meaning x is an
interior point of U, for some i. So 3r > 0. B,(z,r) C U, C JU;.
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3. Suppose Uy, ..., U,, are open subsets of X. Let
T € ﬂ U;
i€[1,n]
Means Vi € [1,n]. z € U,, then
vr € [i,n]. 3ry,...,7, > 0. By, ) C U,
Now define r := min{r,,...,7,,} >0

= Bd(m,r) - Uz
= By CU N..NT,
= z is an interior point of U; N...NU,,

= Vzr e ﬂ U;. z interior
1€[1,n]

= ﬂ U, is open
i€[1,n]

1.3 Topological spaces

Definition. Let X be a set. A topology on a set X is a collection 7 C P(X) of subsets U C X
called T -open subsets such that

(T) 0, X eT
(T2) any union of members of T belongs to T
(T3) any finite intersection of members of 7 belongs to T

In this case, (X, T) is called a topological space.

Example (Every metric space is a top. space). Let (X, d) be a metric space. Then
T 4 := {d-open subsets of X}

is a topology on X.

Remark. Different metrics on X may give rise to different topologies on X.

Example (Discrete top. space). Let X be any set. Then

T := P(X) = Powerset of X

is a topology on X, called the discrete topology, induced by the discrete metric. X with the discrete
topology is called the discrete topological space.
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Example (Indiscrete/trivial top. space). Let X be any set. Then
T ={0, X}

is a topology on X, called the indiscrete topology.

Definition. An open set that contains a point z is called an open neighborhood of z.

Definition (Hausdorff, or 7},). A topological space is called Hausdorff if for any =,y € X, z #
y, there exist disjoint open sets U,V C X such that

U>zand V oy

Theorem. Every metric space (X, d) is Hausdorff.

proof. Let z,yC X,z #y. Then r:=d(z,y) >0. Now define U:=By(z,%),V =
B,(y, %), meaning U,V are disjoint open neighborhood of x,y, thus X is Hausdorff. [

Theorem. If X has greater than one element, then the trivial topology on X is not Hausdorff.

proof. In the trivial topology, the only open neighborhood of any point x € X is X itself. So for
any z,y € X,z #+ y, there are no disjoint open sets U,V C X such that U 3 z and V > y.
O

Example. X = {a,b},a # b. Possible topologies:
* T, ={0,X}: trivial

* 7’2 = {Q’{a}vX}

* 72 = {Q’{b}’X}

e 73 ={0,{a}, {b}, X}: discrete

Example. X = R. Define:

T = {unions of half-open intervals of the form [a,b) for all a < b € R}

T is a topology on R, called the lower limit topology on R.
Notation: R; ; = (7,R)

Question . How is R;; related to R with the usual topology (i.e. the topology induced by the
Euclidean metric)?

Answer: They are not the same. [a,b) is open in R; but not with respect to the standard topology
on R.

Theorem. Every d-open subsets U C R is always open in Ry .
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proof. Suppose U C R is d-open, and let z € U, then z is an interior point of U with respect to
d.So3r > 0. By(z,r) CU and U = UmeU[:c,:v +7), UisopeninRy;. O

Definition. X any set, 7,7’ topologies on X.

e JTisfinerthan 7' if T D T’
e Jiscoarserthan 7' if T C T’

Remark. Lower limit topology on R, R;;, is finer than the standard topology on R.
Example. (X,T) top. space, Y C X.
Tly={UNY |UeT}

is a topology on Y, called the subspace topology induced by 7.

Definition (subspace). (Y, T |y ) is called a subspace of (X, 7).

Theorem. If 7 is induced by a metric d on X, then the subspace topology 7|,- on Y is induced
by the metric d|y, .

1.4 Summary

Spaces in R™ with d = dg,
— Subspaces of R"
— General metric spaces
—> General topological spaces

Question. Is every metric space equivalent (as in homeomorphic) to a subspace of R™ for some 0 <
n < oo?

Answer: No. We will see that any subspaces of R” is 2nd countable, but e.g. (R, dy;., ) is not 2nd
countables.

Fact (Nagata-Smirnov) . For all metric space (X, d), there exists a set J (very big, possibly
infinite) such that (X, d) is homeomorphic to a subspace of (RX,d,,).

Here:
R :={f:J >R}

d,, = uniform metric on R”

dy(t,g) = sup{min{1,d(f(z), g(z))} | z € J}
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1.5 Bases for topologies

Definition. Let X be set, a collection B C P(X) is a base for topology on X if
D X = UBezs B

(2) If B, B’ € B, then BN B’ is a union of members of 3.

Given such a base B C P(X), we can define

T 5 := {Unions of members of B}

Can check: If B satisfies (1) and (2), then T 4 is a topology on X.

Remark. 7 5 is the coarsest topology on X for which all members of B are open. Conversely, if a
topology 7 on X is already given, then a base for T is collection B C T such thatevery U € T is a
union of members of 5.

Remark. Every top. space (X, T) has a base, namely B = 7.

Example. X =R, B = {(a,b) | a < b}. In this case, T 5 is the usual topology given by d(z,y) =
|z, yl.
Example. Let (X, d) be a metric space, B := {By(z,7) | z € X,r > 0}.

Definition (2nd countable). (X, 7) is 2nd countable if it has a countable base.

Example. (R",d = d,) is 2nd countable.
B = {Bd(x7r) ‘ (S an,r. € @,7’ > 0}
is a countable base.
Definition (Neighborhood base). Let (X, T) be top. space. A neighborhood base at z € X is

a collection V,, C T of T-open neighborhoods of = such that for every T-open neighborhood
N of z, there exists N’ € N, such that N" C N.

Definition (1st countable). (X, T) is 1st countable if every x € X has a countable neighbor-
hood base.

Example. Every metric space (X, d) is 1st countable.
proof. Given z € X, let
Ny :={By(z,r) | r € Q,r >0}

and this is a countable neighborhood base at . O

10
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Theorem. 2nd countable implies 1st countable.

proof. Suppose (X, T) has a countable base B. Let z € X, then
N,={Be€B|zeB}
is a countable neighborhood base at x. O

Caution. The converse is not true.

Example. (R, d = dg,.) is 1st countable since NV, = {{z}} is a countable neighborhood base at z,
but it is not 2nd countable.

Theorem . If X is an uncountable space with the discrete topology then X is not 2nd
countable.

proof. X uncountable & discrete
= Evert set in X is open
= Evert 1-point set in X is open
= If B is any base for X, then every 1-point set must be union of members of B
= Every 1-point set must be a member of B
= 3B contains uncountably many members
= X is not 2nd countable

Example. X = R;; (R with lower limit topology) is 1st countable but not 2nd countable.

proof. N, ={[z,z+7r) | n € Qt}isacountable neighborhood base at z, so X is 1st countable.
But let B be any base for R;;,. For a point z € R, choose! a base set B,, € B containing z such
that B, C [z,x + 1). Consider the map

R— B
z+— B,

It’s easy to see this map is injective because x = inf B,, implies that |B| > |R|, so B is uncount-
able and R; is not 2nd countable. O

1May requires Axiom of Choice

11
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1.6 Continuity

Definition (Continuity). Let (X, ), (Y,T") be top. spaces, f : X — Y. f is continuous at z €
X if the preimage f~!(v) of every 7’-open set V is T -open. So a continuous map f: X — Y
induces a map

T T’
fr(V)«V

Example. Let X be any set, id : X — X be the identity map, and 7, 7’ be two topologies on X.
When isid: (X,7) — (X,7"’) continuous?

id: (X,7) — (X,T"’) is continuous
< the preimage under id of each J”’-open set is 7 open
<= each J’-open set is also T -open
< T is finer than T’

Remark. The identity map of a top. space (X, 7) is always continuous.

Example . Let (X,7), (Y,7’) top. spaces., y, € Y, f: X — Y the constant map, i.e., Vx €
X. f(z) == y,. Then f is continuous.

proof. Let V C Y be any subsets, then

_ Xify, eV
L)) = 0
P )_{(D ifyo #V
then the preimage of any 7’-open set is 7 -open, f is continuous. a

Remark. Constant maps are always continuous. Furthermore, if X contains only one point, then
any map f: X — Y is continuous.

Definition (Closed sets). Let (X, ) top. space, A C X is closed if X — A = X \ A is open.

Example. X =R, A = [0, 1]. A is closed in R because

Caution . There exist sets that are neither open nor closed. And there exist sets that are both
closed and open called clopen. For example, [0,1) C R, is clopen or in any space X, the sets @, X
are clopen.

Definition. X is connected if the only clopen subsets of X are @, X.

12
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Theorem. f: X — Y is continuous iff the preimage of every closed set in Y is closed in X.

proof. idea: If A C Y is any subset, then
FAYNA) =X\ f(4)

so taking complements is “compatible” with taking preimages & exchanges open and closed
sets. O

Theorem (Properties of closed set). (X, T) be top. space. Y C X subspace equipped with the
subspace topology 7|y :={UNY | U open in X}. BCY is closed in Ty iff there exists a
closed set A C X such that

B=ANY
proof. Suppose B CY is closed in T |y,
= V: =Y\ Bisopenin 7|y
= V=UnNY foranopensetU C X
= B=Y\V=Y\({UAY)
—Y\U
=YNn(X\U)
=YNA
=ANY
Conversely the proof is similar. m

Remark.
1. f Y C Xisopenin X and V C Y is open in Y, then V is open in X.
2. If Y C X is closed in X and and B C Y is closed in T|y, then B is closed in X.

Theorem. (X, T) top. space.

1. ¢, X are closed

2. the intersection of any collection of closed sets is closed
3. the union of any finite collection of closed sets is closed

proof.

1. @ is closed because X — @ = X is opegli1 and X is closed because X — X = @ is open.

2.
Let A; C X be closed for i € I, then 4; are open, [ J(X \ 4,) is open, by de Morgan’s law,
X \[)A4; is open, so [ 4, is closed.

3. Similar

Caution. Infinite unions of closed sets are in general not closed.

13
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Example. Take (R,d), A; = [0,1— 1] fori =1,2,3, ..., then

which is not closed.

Example. X be any set,let ¥ = {U C X | X \ U is finite} U {@, X'} defines a topology on X called
the cofinite topology or finite-complement topology.

Theorem. In a Hausdorff space, every 1-point set is closed.

proof. Let X be Hausdorff, x € X. For each y € X — {z}, there exists disjoint open neighbor-
hoods U, > z and V,, 5 y, then

Xx—{z}= |J v
yeX—{z}
is open, so X — {z} is closed, meaning {x} is closed. O

Corollary. In a Hausdorff space, every finite set is closed.

Corollary. if X is itself finite, then every subset of X is closed, so X is discrete.

1.7 Closure and Interior

Definition (Closure). The closure of A C X is the set
A= ﬂ{closed subsets C C X | AC C}

A is the smallest closed subset of X that contains A C X.

Definition (Interior). The interior of A C X is the set
int A := U{open subsets U C X |U C A}

int A is the largest open subset of X that is contained in A.

Definition (Boundary). The boundary of A C X is the set

BdA:=ANX\ A

14
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Remark. By de Morgan,
X\ A=int(X\ A)
X\ A= X\int(A)
SO
BdA=AN(X\int(A))
= A\ int(A)

Remark. By definition, int A C A C Aso A closed iff A = A, and A open iff A = int(A). A is clopen
if A=int(A) = Aand Bd A = @.

Theorem. X top. space, A C X, xz € X.

1. z € X iff every open neighborhood of z intersects A.
2. z € int A iff there exists an open neighborhood of x that is contained in A.
3. z € Bd A iff every open neighborhood of z intersects both A and X \ A.

proof.
1. ¢ A< re X\ A=int(X\A)
<= J an open neighborhood of z that's in X \ A.
<= d an open neighborhood of z that does not intersect A.

2. Follows from the definition of int A
3. Follows from 1. and from

BdA=ANX\A

Example. X = R with standard top. A = [0,1], int A = (0,1), Bd A = Anint A = {0,1}.

Example . X = R? with standard top. 4 = {(z,2,) € R* | 27 + 23 < 1} = B((0,0),1). A open
because int A = A.

A={(zy,2,) €R? | 2] + a3 <1}

= S! = unit circle

Fact. In any metric, By, ., C {y € X [ d(z,y) <r}.

Theorem. X,Y be any top. space, f : X — Y is continuous iff

VAC X. f(A) C f(4)

15
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A continuous map sends points that are “extremely close” to A to points that are extremely
close to f(A).

Definition (Restriction). If f : X — Y isany map and A C X, then f|, denotes the restriction
where

1: A— X
r—x

Fact.i: A — X is continuous with respect to the subspace topology

Lemma (Piecing lemma). Let f : X — Y is any map. Suppose X = AU B where A,B C X
are closed. If f|, and f|g are continuous, then f is continuous.

proof. Need to show that the preimage of each closed set in Y is closed in X. Let C C Y be
closed. Then

fHC)=f1C)n(AUB)
=(fH(C)nAU(fHC)nB)
= (fla)"H(C) U (flp)~'(C) is closed

Theorem. f: X — Y, g:Y — Z both continuous, thensoisgo f: X — Z

proof. LetW C Z be open sets, then g~ (W) is open and f~! (g7 (W)) = (g o f)~* (W) is open.
(]

Remark. The conclusion of the lemma also holds under the following assumptions:

* X =A,U..UA, where all 4; are closed in X and all f|, are continuous.

Finitely Many
* X= |J4,; whereall A, are openin X and all f|, are continuous.

Arbitrary Union

In general, it does not hold if X = A U B where A is open and B is closed.
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1.8 Homeomorphisms

Definition (Homeomorphisms). A homeomorphism f: X — Y is a bijection so that f and
f~! are both continuous.

If such f exists, we say that X and Y are homeomorphic and write

XY

Remark.

1. Inverses and compositions of homeomorphisms are homeomorphisms, meaning = is an equiv-
alence relation on the class of top. spaces.

2. Ahomeomorphism f : (X,7) — (Y,7’) induces a bijection T <= 7', thus X =2 Y = |T| = |T”’|

3. A property of top. space X is called a homeomorphism invariant or a topological invariant
if it is preserved under =. For example, | X|, |7 |, Hausdorff, etc.

Example. id : (X,7) — (X,7) is a homeomorphism.
Example. If T C P(X) is strictly finer than 7’ C P(X), then

id: (X,7) = (X,77)
is a continuous bijection but not a homeomorphism.

Example. X = {a,b}, a # b, recall that there exists 4 topologies:
* T, ={0,X}

* Ty = {Q’ {a}vX}

* 73 = {Q’{b}vX}

* Ty= {Q’{a}’{b}’X}

Only T, and T 5 can be homeomorphic given by

f: X—X
ar—b
b—a

Example. Take [0, 1] and [0, 2] as subspaces of R with usual topology. They are homeomorphic by
the map

f:[0,1] — [0, 2]
T +— 2z
f71:00,1] «+10,2]

Y
-
2<_|y

Likewise, S' = 28! where S! is the unit circle.

17
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Example. (0,1) = R given by homeomorphism
7T
f(z) = tan(mv — 5)
1 i
“1(p) = = T
) = = (arctan(y) + 3 )

T
Example. f: [0,1) — S! given by
f(z) := (cos(27x),sin(27x)) = 27i®

is a continuous bijection, but f~! is not continuous: at (1,0) € S*, f~! does not satisfy the -6
condition. In fact, [0,1] 2 S*.

Theorem (Piecing lemma for homeomorphisms). X = AUB, Y =CUD, A, B C X closed,
C,D CY closed. f: X - Y amap f(A) =C, f(B) = D. Suppose f is a bijection and f| 4 :
A — C and f|g : B — D are homeomorphisms, then f is a homeomorphism.

Remark (Construction of homeomorphisms). Let J C [0, 2] be subset, suppose g;, g, : J — [a, b],
where 0 < a < b < oo are continuous functions. D,, D,, are the subsets of R? given by

D, ={(r,0) |6 Jand 0 <r< gy}

in polar coordinates. Claim: D, = D,. Idea is to define a homeomorphism f : D; — D, by sending
each radial segments in D, linearly to the corresponding radial segment in D,. Put Formally:

o= (i3

can check that f is a homeomorphism.
Example. X = D? = {(z,,2,) CR? |22 + 23 <1}, Y =[-1,1] x [-1,1], X = Y. oy,
X ={z eR? | |z]guq <1}
Y ={2 €R? | o)y < 1}
define f: X — Y by
0 ifx=0

"zHEucl T OtherWiSe
"1‘ HMax

Same works in R":

{z <R" | |2]gue <1} = [-1,1]"

18
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Definition (Isometry). Let (X,d),(Y,d’) be metric spaces. Any isometry f: X — Y is a
bijection so that

Vzi,25 € X. d'(f(21), f(22)) = d(z1,T5)

Remark . Isometries are injective and continuous, and every bijective isometry is a homeomor-
phism.

Example (Some isometries of R?).
* Rotations by an angle ¢

* Reflections along lines

* Translations

* Glide reflections

Claim. f : R? — R? any map, the following are equivalent:
(1) fis an isometry fixing O

(2) Vz,y € R (f(z), f(y)) = (z, v)
(3) f(z) = Az for an orthogonal (A*A = I,) matrix A

And 3 implies that such map is linear
proof.
* (3) = (1) Let f(z) = Az for A orthogonal, then f fixes 0 and
d(f(z),y(x)* = d(Az, At)?
= (Ax — Ay, Az — Ay)
= (A(z —y), Az —y))
(z —y)'ATA(z —y)
(z —y)'(z —y)
= d(z,y)?

* (1) = (2) Let f be an isometry fixing 0. Follows because

1
<$, y> = §<d($7 y)2 - d(x7 0>2 - d(ya 0)2)
* (2) = (3) Suppose f preserves ( , ). Let A = (a, a,) wherea, := f(e;),a, := f(e,), thenay, a,
are orthogonal, so A is orthogonal. Let h(z) := A*f(z) = A~! f(x). Then h preserves ( , ) and

fixes e;, e,, SO

h(z) = (h(z), e1)e; + (h(z), es)es
(h(z), h(ey))er + (h(z), h(ez))e,

= {z, 61)61 + <~’Ua ey)ey =1
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1.9 Linear and affine maps

Easy to see: Every linear map f : R? — R? is continuous and every invertible linear map f : R? —
R? is homeomorphism.

Definition. f : R? — R? is affine if

Vay,ay € RZ A, Ay €R. f(Aja; + Agay) = A f(ay) + Ay f(ay) with A\ + Xy =1

Exercise. In this case

Claim. f affine and fixes 0 iff f is linear.

proof.
* “«<” obvious
* “=” Suppose f is affine and fixes 0, and let A\;, A, € R be arbitrary. Then

FAay + Xga,) = f(Arag + Agay + (1 — A — A5)0)
= A f(ay) + A f(ay) + (1= Ay — A9) £(0)

= A1 f(ay) + Ao f(ay)
= f is linear

Remark. Any constant map is affine, and linear combinations of affine maps are affine.

Corollary. Every affine f : R? — R? has the form
flz)=Az+b

fir a 2 x 2 matrix A and v € R?. Invertible affine maps f : R? — R? are homeomorphisms.

Remark (Special case). Let A € R, A # 1, A # 0, f(xz) = Az + v is a deletion or scaling by A\ with
fixed point
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Definition (Affinely independent). a;, a,, a; € R? are affinely independent if

Easy to see, a,, ay, a5 affinely independent iff a, — a,, a3 — a, linearly independent. Geome-
try: a,, a,, as are not collinear.

Fact. If a;,a,,a; € R? are affinely independent and b, by, b5 € R? are arbitrary, then there
exists a unique affine map f : R? — R? such that

f(a;) =b; fori=1,2,3

Definition. A homeomorphism composed by multiple maps with piecing lemma is called a
PL homeomorphism, where PL stands for piecewise linear.

Definition (triangulation). A triangulation for R? is a collection T of triangles ¢ € R? such that
1. the t € T cover R?

2. iftwo t #t' € T meet, then t N¢’ is either a common edge or a common vertex.

3. Every bounded set B C R? meets only finitely many ¢ € T.

Here,
triangle Euclidean triangle, non-degenerate, and the interior is non-empty
bounded fits into a B(a,r) € R? for r sufficiently large

Definition . A bijection f: R? — R? is a PL homeomorphism if there exists triangulations
T, T’ of R? such that f maps each ¢ € T affinely (and bijectively) toat’ € T".

Fact. Every PL. homeomorphism of R? is a homeomorphism.

proof. First use the piecing lemma (for finite unions of closed sets) to show that f is continuous
on each bounded set B C R2. Then use the piecing lemma (for arbitrary union of open sets) to
conclude that f is continuous on all of

R? = U B(a,r)
>0
Finally, repeat the argument to conclude that f~! is also continuous. O
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Remark (Some types of homeo’s of R? with dj,,)-

Type Algebraic Description Examples

Isometries f(z) = Az +v R?x0O(2) | congruent triangles

Isometries & scaling | R? x (O(2) x R?) similar triangles

Affine bijection R? x GL,(R) any triangles

PL homeomorphisms | — simple polygons
Where:

R2 Additive group of R?

R* Additive group of strictly positive real numbers
O(2) set of orthogonal 2 x 2 matrices

GL,(R) set of real invertible 2 x 2 matrices

1.10 Topological Properties

Properties of a topological space (X, T) that are preserved under homeomorphisms:
* | X| (number of points)

* |T| (number of open sets)

* Minimal cardinality of a basis or a neighborhood base

2nd countable has a countable base
1st countable every point has a countable neighborhood base

1.10.1. Separation Properties

Definition (Regular). X is regular if it is Hausdorff and for all closed C C X and z € X \ C
there exist disjoint open sets U,V C X suchthat C CU andz € V

Definition (Normal). X is normal if it is Hausdorff and for all disjoint closed C, D C X there
exist disjoint open sets U,V C X suchthat C CU and D CV

Remark. Normal = regular = Hausdorff

Theorem. A Hausdorff space X is normal iff there exists U O C and every open neighborhood
U C C there exists an open neighborhood V' D C such that V C U

Theorem. A Hausdorff space X is normal iff for all decomposition X = U U V into open sets
U,V C X, there exists open sets U’, V' C X suchthat X =U’ UV’ and U’ CU and V' C V.

Theorem. Every metric space X, d is normal
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proof. Already seen: (X, d) is Hausdorff. To show it’s normal, Let C;, C, C X be disjoint closed
sets. For each z € C, let

r, i=d(z,Cy) = inf{d(z,y) | y € Cy} >0
for each y € C,, let

r, =d(y,C;) == inf{d(y,z) |z € C;} >0

define:
U= U Buwep) V= U Bug)
{zeCy} {yeCsy}
and one can check U NV = @. Thus X is normal. O

1.11 Compactness

Definition (Open Cover). X top. space, A C X subset. An open cover of A is a collection of
open sets U; C X such that

Uv.24
Definition (Subcover). A subcover of U is a subcollection V' C U which is still a cover of A

Definition. A C X is compact if every open cover of A has a finite subcover.

Special case: A = X. X is compact if every open cover of X has a finite subcover.

So: compactness can be seen as a property for
* A top. space X
e Asubset AC X

Easy to see: A C X compact <= A compact as a top. space equipped with the subspace topology
Usually: regard compactness as a property for top. spaces

Remark. Compactness is preserved under homeomorphisms.
Theorem. Let f : X — Y be continuous, if X is compact, then sois f(X) C Y

proof. LetV = {V,} be an open cover of f(X) C Y, U := {f~!(V;)} is an open cover of X since
f is continuous. Since X is compact, there exists a finite subcover U, ,...,U; €U of X, then
V; ,...V;, is a finite subcover of V;. Thus f(X) is compact. O

PR

Example. R is not compact.

23



Basic Point Set Topology

U:={(—r,r) | r>0}
is an open cover with no finite subcover.

Example. X metric space, A C X an unbounded subset, then A is not compact.

proof. Fixz € X,

U Bien =X24

r>0
is an cover of A with no finite subcover. O

Remark . In a metric space, compact subsets must be bounded. In fact, they must be totally
bounded, i.e., for every € > 0, they can be covered by finitely many e-balls.

Example. (0,1) us not compact, since (0,1) = R
Example. [0, 1] and [0, 1] are compact

Example. If a topology space X has only finitely many open sets, it is compact.
Theorem. In a Hausdorff space, every compact subset is closed.

proof. Let X be Hausdorff and A C X be compact.
Need to show: Every € X \ A is an interior point of X \ A.

Consider y € A, since X is Hausdorff, there exists disjoint open neighborhoods U, > z and V,, 5
y, then {Vy | y € A} is an open cover for A. Since A is compact, there exists a finite subcover
Vy sV, . Now define

v=0U0, n..NU,
then U is an open neighborhood of x and

uvnacun(Jv,)

- U(Uﬂ Vyi)

=Y CX\A

hence z is an interior point of X \ A. Thus X \ A is open, meaning A is closed. O
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Theorem. In a compact space, every closed subset is compact.

proof. Let X be compact and A C X be closed. Let U = {U,} be an open cover of A. Then
X\ Aisopen,soUU{X\ A} is an open cover of X. Since X is compact, there exists a finite
subcover U, ,...,U; , X\ A. Then U, ,..,U, isa finite subcover of A. O

(2

Definition. A map f : X — Y is open (resp., closed) if the image of each open (resp., closed)
subset of X is open (resp., closed) in Y.

Example. The map f : R? — R, f(z;,,) := z;, is open because the image of any ball is opened
interval.

Caution. f is not closed. Let

1
A:= {(ml,xz) €ER|z; #0and z, = x_}

1
A is closed in R? but f(A) = R — {0} is not closed in R.

Remark. If f : X — Y is a bijection, f closed iff f open iff f~! continuous.

Theorem (Compact-to-Hausdorff Theorem). Let f: X — Y be a continuous map from a
compact space X to a Hausdorff space Y. Then f(X) is compact.

proof. Let C' C X be closed, then C is compact, f(C) is compact, and f(C) is closed. Thus
f(X) is compact. O

Corollary. Let f : X — Y be a continuous bijection from a compact space X to a Hausdorff
space Y. Then f is a homeomorphism.

proof. f is a closed map, so f~! is continuous. O
Caution. The assumption on X and Y are essential!

Example. f:[0,1) — S* given by f(s) = (cos(27s),sin(27s)) is a continuous bijection but not a
homeomorphism.

Example. X = {a,b},a # b. Equip X with the discrete topology, and Y = {a, b}, but with trivial
topology.
id: X —Y

is a continuous bijection, but not a homeomorphism.
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1.12 Compactness in R

Fact. Every non-empty bounded above subset A C R has a least upper bound in R
Theorem. [a,b] € R is compact

Corollary. A C R compact iff A closed and bounded.

1.13 Product Topology and compactness in R"

Let X, Y be topological spaces.
B:={UxV |UCX openinU,V CY open in Y}

Easy to see: this is a basis for a topology on X x Y denoted T, oqyct-

Definition (Product neighborhood). A U x V that contains (z,y) € X x Y is called a product
neighborhood of (z,y).

Definition (Two possible extensions to infinite product). X, € I, family of top, space, let X
be the set [T, _, X

1.

Broduct = {H U, | U, open in X,;,U; = X, for all but finitely many z}

il
Product Topology on X = [] X,
2.
Biox i= {H U, | U, open in Xi}
i€l
Box Topology on X = [[ X
For finer topologies, T, . are usually finer than T

product

Proposition. Let X x Y be equipped with T, ,4,.;, then the inclusion iy : ¥ — X X Y, iy :
X — Y, the projections py : X XY — X, py : X X Y — Y are continuous and open.

26



Basic Point Set Topology

Remark. T
uous.

product 1S the smallest (coarsest) topology on X x Y that makes the projections contin-

Corollary. For fixedz € X andy € Y, {z} x Y and X x {y} are homeomorphic to Y and X,
respectively.

Theorem (Tychonoff's Theorem). Let X, € I be a family of compact top. spaces. Then the
product [, _, X; is compact.

proof. We will need tube lemma.

Lemma (Tube lemma). Let Y be compact and W C X x Y be an open neighborhood of
{z} x Y for an z € X, then there exists an open neighborhood U C X of z such that U x
Y C W.U x Y is sometimes called a “tube”.

Claim. The standard topology on R™, 0 < n < oo agrees with the product topology on
R"=RxRx..xR

Theorem (Heine-Borel). A C R™ compact iff A is closed and bounded.

Fact (Generalized Heine-Borel). (X, d) be metric space. X compact iff X complete (every
Cauchy sequence has a convergent subsequence) and totally bounded.

Remark. “Compact” is a topological property. “Complete” and “totally bounded” are metric prop-
erties that are preserved under bijective isometries.

Definition (Sequences). Let X be topological space. A sequence in X is a function
s:N— X

usually write: s,, := s(n) and {s,, | n € N} or {s;, s,, ...} for the sequences.

Definition (Subsequence). A subsequence of a sequence s in X is a composition s’ = s o j for
a strictly increasing function j: N — N.

In other hands: A subsequence is of the form

{Sjl’ 84,1555 }

for j; < g, <ijs3 <.
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Definition (Convergence). s be a sequence in X, x be any point in X. We say that s converges
to z if for every open neighborhood U of z, there exists N € N such that s, € U foralln > N.

Equivalently, every open neighborhood of z contains s,, for all but finitely many n.

Remark. In Hausdorff space, a sequence s can converge to at most one point. In this case, we say
that z is the limit of s and write

z = lim s,
n— oo

Definition (Sequentially Compactness). A topological space X is sequentially compact if
every sequence in X has a convergent subsequence.

Question. How is this related to compactness?

Preliminary observation: If s,, — z, then every open neighborhood U of z contains s,, for infinitely
many n.

Proposition. Let z € X, if X is 1st countable and if every open neighborhood of = contains
s,, for infinitely many n, then s,, has a convergent subsequence converging to z.

proof. Since X is 1st countable, there exists a countable neighborhood basis

N, ={N;,Ny, N, ...}
at z. Define

M,:=N;Nn..NN,

then {M;, M,, ...} is a new neighborhood basis at z and

M, DM, 2 M;D..
In particular, every open neighborhood U of z contains all M, with i > 0. Then we can choose
J1 < jo < jg < ... such that

s;, € M,

then {31‘1’ 87,1 5],1 } is a subsequence of s that converges to . O

Theorem. If X is 1st countable, then X compact = X sequentially compact.

proof. Suppose X is compact, and suppose S,, is a sequence in X that has no convergent
subsequence, then Vz € X. {s,,} has no subsequence converging to z. Since X is comact, there
exists finitely many z, ...,x,, € X such that U, U..UU, =X, then X contains s, for only
finitely many n, contradiction because {s,, } was a sequence in X. O
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1.14 Lebesgue number lemma

Definition (Lebesgue number). Let (X, d) be metric space, & = {U,} be an open cover for X.
A real number § > 0 is called a Lebesgue number for ¥ if every A C X with @(A4) < § is
contained in some U, € U.

Theorem (The Lemma). If a metric space X is sequentially compact then every open cover of
X has a Lebesgue number.

proof. Let X be sequentially compact and & = {U,} be an open cover. Suppose there is no
Lebesgue number for ¥/, there there are arbitrarily small A C X which are not in U,. Then there
exists a sequence A;, A,,... C X such that

1
A —
B(4,) <

but since that A,, is not contained in any U;, choose a,, € A,, in each A4,,, get a sequence a, a,, ...
in X that has no convergent subsequence, contradiction. O

Theorem. If X is a metric space, then X sequentially compact = X compact.

1.15 Connectness

Definition (Separation). A separation for top. space X is a pair of disjoint non-empty open
subsets U,V C X suchthat X =U UV

Definition. X is separated or disconnected if there exists a separation for X. Otherwise X
is connected.

Note. If X = U UV is a separation, then U and V are clopen in X.

Remark. X connected
<= X is not a disjoint union of two non-empty closed subsets
<= the only clopen subsets of X are @ and X

Definition . A subset A C X is separated (resp., connected) if A is separated (resp.,
connected) in the subspace topology.

Note. Connectness is a topological property.
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Theorem. Let f : X — Y be continuous. If X is connected, then so is f(X).

1.16 Connectness in R

Definition. A C R is convex if

z,y€ A= [z,y] C A
Remark. Convexity also makes sense in R™.

Lemma. A C R connected = A C R convex, but not true in general.

proof. Suppose A C R is connected but not convex, then
Jr,yc A [z,y| ¢ A
=3Jze(z,yl.z2¢ A

= (—00,z) N A and (z,00) N A is a separation for A

= A is disconnected
1

Lemma. A C R connected = A C R is an interval, a ray, or R.

proof. Assume for simplicity that A is bounded. Let a := inf A and b := sup A, then [a, b] C A.

Exercise: Since A is convex, A D (a,b)

4 possibilities: A = [a,b], A = [a,b), A = (a,b], A = (a,b), then A is an interval
Lemma. A C R an interval, a ray, or R = A C R connected.

proof. Wil only consider the case
A=[a,b] fora<b
Suppose U,V C R are open subsets such that U N A and V N A are disjointand U UV D A.
Need to show: U D AorV D A.
Assume WLOG that a € U, define
B:={x € [a,b] | [a,z] CU}

Notice that a € B since a € U, then B # @ and B is bounded since C [a, b]. Let
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u:=supB >a

Now prove as an exercise: u € U, u € B, u = b, then b € B, hence B = [a,b] C U, thus A C U.
O

Summary. The following are equivalent:

(@) A connected
(b) A convex
(¢) A an interval, a ray, or R

Theorem (IVT). Let f : X — R be continuous. If X is connected and f assumes two values
z,y € R, then it also assumes every value z € [z, y].

proof. The assumptions imply that f(X) C R is connected, then f(X) convex. O

Corollary (EVT). Let X # @ be connected and compact, then
f(X) = [m, M]

where m is the absolute minimum of f and M is the absolute maximum of f.

1.16.1. Application
Theorem. Let f : S* — R be continuous. Then

Az € St f(z) = f(—=x)

proof. Define g : S' — R by
9(z) = f(z) — f(—z) €R

then g is continuous and g(—z) = —g(z). Now fix x € S'. Let a € S* be one of the arcs from
z to —z. Let k := ¢g|,, : @ — R. Can assume WLOG k(z) > 0, then k(—z) < 0, hence there exists
y € a such that k(y) = 0, then g(y) =0, and f(y) = f(—y). O

Remark. Turns out: If » > 1 and f : S™ — R" is continuous, then

dz € S™. f(—z) = f(x)

1.17 Path Connectness

Definition (Path). X top. space, z,y € X, a path from z to y is a continuous map f : [0,1] —
X such that

f(0) =z and f(1) =y
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In this case, say f connects z to y.

Definition (Path Connectness). X is path connected if

Vz,y € X.d a path f from x to y

Remark. if f is a path from z to y, then

f=f0—1),te01]
is a path from y to x.
Remark. Can also compose paths in X:

f is a path from z to y, g is a path from y to z, define

is a path from z to z

Definition (Path Component). Define a relation ~ on X by
x ~ y:=3a path f from x to y

~ is an equivalence relation, and the equivalence classes are called path components, turns
out, the maximal path connected subset of X.

Definition. Define a in general different relation ~ on X by

x~7y:< Jaconnected AC X.A.>zx,y

~ is an equivalence relation, and the equivalence classes are called connected components
or just components, turns out, the maximal connected subset of X.

Theorem. X path connected = X connected

proof. Suppose X is path connected but not connected, then there exists a separation U, V C X.
Let z € U, y € V, there exists a path f from z to y and [0,1] = f~1(U) U f~1(V) is a separation

for [0, 1], contradiction.

Remark (Consequence). Each path component of X is connected
= each path component is in a connected component
= each connected compoenet is a disjoint union of path components

Example. Let X = AU B C R?,

a
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ai{ (nin(2)) 1o e 0.1}

B:={(0,y) | y € [-1,1]} = {0} x [-1,1]
Equip X C R? with the subpace topology from R2. Then X is connected but not path connected.
This is called the topologist’s sine curve.

Fact. Connected components are closed, but path components are not necessarily closed.

Proposition. Every convex subset A C R™ is path connected

proof. Obvious: if z,y € A, then

is a path in A from z to y. O

Definition. X is locally path connected if for every z € X and every open neighborhood U of

x, there exists an open neighborhood V' C U of « that is a neighborhood basis of = consisting
of path connected sets.

Remark. This is equivalent to saying that X has a basis consisting of path connected sets.

Example. R" is locally path connected

Proposition. Suppose X is locally path connected, and U C X is open in X, then
U connected = U path connected

while <= always holds.

Definition (Quotient Spaces). ¢ : X — Y be surjective maps, then
U CY open < ¢ '(U) C X open

In this case:
* Y is called the quotient space of X by g
* Say Y has the quotient topology w.r.t. (X, Q)

where fTquotient = {U c Y | qil(U) - X Open}
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Corollary. Suppose

y — 4 Ly

is a commutative diagram of continuous maps, where ¢ is a quotient map. If f is continuous,
then so is g.

1.18 Construction of quotient spaces

Definition. X space, ~ equivalence relaton on X, consider the map
X .
q: X — —, all ~ equivalence classes [z]
can equip £ with the quotient topology,
X —il
U C — open <= ¢ *(U) C X open

(Z, Tquotiens) is called an identification space.

Example (Special Case). A C X subset, define

r~y<=zr=yorz,ycA

Definition.

s
2| <

“collapsed” A to a single point.
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Proposition. Let f : X — Y be a continuous surjection from a compact space X to a Hausdorff
space Y. Define

Ve, o' € X.x ~ 2’ <= f(x) = f(z')

Then the induced map f : £ — Y is a homeomorphism.

f

—>Y

S

quotient map: ¢

%
il

2|

proof. Itis clear that f is a continuous bijection. Moreover, £ is compact since £ = g(X). Then
f is a continuous bijection from a compact space to a Hausdorff space, thus a homeomorphism.

(]
Example. X = [0,1], A= {0,1}
Claim: {[g i]} = [0— ~ Gl
proof. Define f:[0,1] — S by
f(t) = 6277121‘,
then f is continuous and surjective. Because [0,1] is compact, S' Hausdorff, then f(t) =
ft') <t =1t ort,t' €|0,1]. Therefore f : {8 i]} — S is a homeomorphism. O
Example.
X=D"={(z4,..,z,) ER? |22 + ...+ 22 <1} CR"
A=9D"=85"1={.|zi+. . +22 =1}
Claim: BD;n >~ Sn

proof. Define f: D™ — S™ by

f(2) = | sin(x|a]) = Bk —cos(mfz]) [ € R" xR
—_— eR
€Rn
for x = 0 and f(0) := (0, ...,0,—1)

f continuous injection. D™ compact, S™ Hausdorff, f(z) = f(z’) iff x = 2’ or x, 2" € D", then
f: 45= — S™ is a homeomorphism. O
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1.19 Disjoint Union and gluing

Definition (Disjoint Union Topology). A, B disjoint topological spaces, if not, could make them
disjoint by replacing them by A x [0] and B x {1} € (AU B) x {0,1} as a set. Define

T:={UUV | U open in A,V open in B}
then T is a topology on A U B called the disjoint union topology. Use the notion

AUB:=(AUB,T)
Note. A, B are clopen in AU B, then if A, B + @, then AU B is disconnected.

Definition. Suppose K C B is a subset, f : K — A a continuous map (or homeomorphism)2,
assume K is closed in B (and K closed in A), then define

AUB
f(z) ~z,Vx € K

AUfB::

Why do wee want K to be closed and f to be continuous?
Claim. The subspace topology on A C ALl B agree with the original topology on A.
proof. Clear that the quotient map
q:AUB— AU;B

restrict to a continuousjection from
id
A— A

from A with original topology to A as a subspace of ALl B. For every closed set C' C A in
subspace topology is also closed in the original topology.

¢ H(C)=CUfHC)

where f~1(C) is closed in K since f continuous, hence closed in B. Then ¢~ 1(C) is closed in
AU B, then C'is closed in ALl; B by defintion of T O

quotient*

Proposition. Let

g:AuyB—C

be induced by continuous maps

ga:A—Candgp:B—C

2Text in grey parenthesis are extra assumptions in textbook
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such that g4 o f = gg|x then g is continuous.
proof. Have

L
AUBMC

AU, B

g continuous by the universal property of quotient topology..

Lemma (Urysohn's). Let A, B be disjoint closed subsets in a normal space X, then there exists
a continuous f : X — [0, 1] s.t.

f(A) € {0} and f(B) C {1}

proof. Slightly lengthy (non-obvious) in general. For metric space, can take:

d(z, A)
d(z,A) + d(z, B)

f(z) =

where d(z, A) := inf{d(z,y) | y € A}
Remark. Could replace [0, 1] by any [a, b
Remark. If f: X — [0, 1] is a Urysohn function for A and B, then

oer(p3)rer (G

are disjoint open neighborhoods for A and B.

Theorem (Tietze Extension Theorem). Let X normal, A C X closed, f: A — [a,b] contin-
uous, a < b. Then there exists a continuous F' : X — [a, b] such that F|, = f.

Lemma. The Tietze Extension Theorem also holds for continuous function
f:A—R

for A C X closed and X normal.
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1.20 Simply connected space

Recall. X path connected if Vz,y € X. there exists a path from z to y. Equivalently, every (cont.)
map g:S° — X extends to a continuous map G : D' — X, where D! =[-1,1],8° = D! =

{-1,1}.

Definition. X simply connected if it is path connected and every continuous map g : S* — X
extends to a continuous map D? — X.

Fact.
1. Convex subsets A C R™ are simply connected

2. St or R?2 — {(0,0)} or R® — {z axis} are not simply connected
3. If X =U UV where

e U,V C X are open
e U,V are simply connected
* UNYV is path connected

then X is simply connected

Example. X = S? or ™ for n > —2, N = (0,0, 1), north pole, S = (0,0, —1), south pole. Define
U:=8%—{N}=R?
V=82 — {S} ~R?

then U,V are open and simply connected, U UV = S2. Moreover, UNV = S? — {N, S} is path
connected, then S? is simply connected.

1.21 Jordan Curve Theorem and Schoenflies Theorem

Definition. A simply closed curve in R? is a continuous injection f : S* — R2.
Remark. The image C' = f(S') is sometimes also called a “simple closed curve”

Theorem (Jordan Curve Theorem). If C = f(S!) is a simple closed curve in R?, then R* \ C
has exactly two connected components. Moreover:

* one these components is bounded and the other one is unbounded
* (C is the boundary of each of these components

There exists various proofs, e.g. via (co)homology (Lefschetz duality). Direct proof:
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proof. Can compactify R? to get R? U {oo} = S§2. Map C onto S? without touching co. Now
remove p € C C S2. to get an “infinite arc” C’ C R2. This reduces the original problem to
showing:

Lemma. If f: R — R? is a closed embedding and C’ = f(R), then R? \ C’ is not path
connected.

proof. Let C’ = f(R), f : R — R? be a closed embedding. Let g : C’ =, R be the homeo-
morphism which is inverse of f. By Tietze Extension Theorem, g extends to a continuous
G : R? — R. Think R? as the product of xy-plane and z-axis. Define F': R® — R? as the
composition

(p, 2) = (p, 2+ G(p)) > (p — f(2 + G(p)), 2 + G(p))

(p,2") = (p— f(2), %)

it’s easy to see that F' is a homeomorphism and maps C’ C R? C R? bijectively to the z-
axis. Then

R3\ C’ % R3\ {z axis}

then R \ C’ is not simply connected. On the other hand, can write R3\ ¢’ as R3\ C’ =
U UV where

U :=(R? x (0,00)) U((R2\C") x (—1,1))
U := (R? x (—00,0)) U ((R2\ C") x (—1,1))
can check that U and V are open and simply connected. Note that UNV = (R%\ C”) x
(—1,1). If R2 \ C” were path connected, then U N V would be path connected, contradiction,
hence R? \ C” is not path connected. O
Note (Why is this proof nice?).
* To prove that R? \ C’ is not path connected, would like to straiten C’

* This is hard to do in R?, but easier in R?
* Turns out: C’ can be straightened in R?

a

Theorem(Schoenflies Theorem). If C = f(S 1) is a simple closed curve in R?, then there exists
a homeomorphism from R? to itself which takes C to S*.

In particular:

* This homeomorphism maps the bounded component of R? \ C to D? \ dD?, meaning this
component is = D? \ §D?
* The unbounded componenet is = R? \ D?

proof. Not too hard if C' is a simple polygon, but hard in general. Proof omitted. O
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Note. Suppose f : S* — R? is smooth (a C* diffeomorphism onto its image) and C := f(S*). Let
x € R%2\ C. How can we tell whether z is in the bounded or the unbounded component of R? \ C?

* Choose a base point z, € R? \ C that is “far away” from C
* Choose a smooth path v, C R? for x to z, which intersects C transversely
* z is in the bounded component if |C' N ~v,| is odd and in the unbounded component otherwise.

1.21.1. Situation in higher dimensions

Let f: S"~! — R™ continuous injection. S := f(S™') C R". Jordan Curve Theorem remains true:
R™ \ C has exactly 2 path components, can be proved by cohomology and Lefschetz duality.

But, in general:

* The bounded component is not = D" \ D"

* The unbounded component is not = R™ \ D"

Example (in R?). Construct a nontrivial embedding of S? into R3.

Get an embedding of S? into R? such that the unbounded component is not =~ R3 \ D3.
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1.22 Local flatness and collar neighborhoods

Definition (Local Flatness or Topological flatness). A topological embedding f : S*~1 — R"
is locally flat if

Vp € S:= f(S™'). 3 an open neighborhood U C R". (U,U N S) = (R",R"! x {0})

Example. The Alexander horned sphere is not locally flat.

Example (for codimension 2 embeddings). Embed R into R3 by infinite many decreasing “knots”
that has a limit point. This embedding is not locally flat.

Example (for codimension 2 embeddings). Let K C R? C R3 U {oo} = S? a knotted simple closed
curve. In D*, connect each point of K to the center of D* using a straight line segment.

Definition (bi-collared). Let f : S"~! — R™ is a continuous injection, S := f (S”_l). S is bi-
collared if there exists an open neighborhood U C R™ of S and a homeomorphism

F:(S"1x(—1,1) > U

such that F |Sn,1x{0} =f
Theorem (Brown, 1961). S locally flat = S bi-collared

Theorem (Generalized Schoenflies Theorem, Brown 1960). S bi-collared => the components
of S®\ S are = D"\ D"

Brown GST
Note. For n = 2, C is locally flat = C bi-collared = the components of S \ C are = D? \ D?
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Chapter 2

The classification of surfaces

Definition (Notations).
D™ :={(zq,...,z,) ER" | 23+ ...+ 22 <1}
Sn—1.=9D"
D! =[-1,1]
D° = {1 point}

2.1 Manifolds

Definition (n-manifold). An n-manifold is a 2nd countable Hausdorff space M such that every
x € M has an open neighborhood U C M with U = R".

So, M locally “looks like” R™.

Fact. Every n-manifold can be embedded into R?"*!  i.e., it’s homeomorphic to a subspace of
R2n+1 .

Theorem. Every compact n-manifold M can be embedded into RY for some N < oo.

proof. Cover M by finitely many open sets U,,...,U, with U, = R", possible since M is a
compact n-manifold. For each i, let

be a homeomorphism. Define
g, M — R"U {0} = S"

by
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_ Jfi(z) zeU;
gz(x) = 00 T ¢ Uz

Exercise: check that g, is continuous (use that U C R"{co} C S™ is open iff U is an open subset
of R™ or co € U and (R™ U {o0}) \ U is a compact subspace of R™)
Let h; : M — R™"! be the composition

9;
M = S™ s R

k copies

then h, is continuous. Now define F : M — R**! x ... x R**! = R*(+1) by
F(z) = (hy (@), s by )

Exercise: F' continuous injective, thus a homeomorphism onto its image because M compact
and R*"*1) Hausdorff. O

Definition (surface). A 2-manifold is called a surface.

Definition (n-manifold with boundary). A n-manifold with boundary is a 2nd countable Haus-
dorff space M s.t. Vo € M. 3 an open neighborhood U C M of z. and a homeomorphism h
from U to an open subset of H", where

H" := {(z{,...,z,) € R" | z, >0}
oH" := {(z4,...,x,) € R" | z,, = 0}

Fact.

1. If z is an interior point of M, then it has an open neighborhood =~ R".

2. If z is a boundary point of M, then it has an open neighborhood =~ H"

3. A point z € 0H can’t simultaneously be an interior point and a boundary point.

Definition. O M := {all boundary points of M}

Fact. M is an (n — 1)-manifold without boundary

Definition. An n-manifold M is called closed if it is compact and has empty boundary.

Example. R™ is an n-manifold without boundary (but not closed for n > 0 because not compact)
Example. H" is an n-manifold with boundary

Example. S™ is a closed n-manifold and = € S™ is one of the sets
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U= 5" — {N} =~ R"
Vi=8"—-{S} ~R"

Example . Every countable discrete space is a 0-manifold (since 2nd countable, Hausdorff, and
locally homeomorphic to R® = {0})

Example. With n = 1, the only compact nonempty connected 1-manifolds are [0,1] and S*.
Example.
H2 = {(z,2,) € R?* | z; > 0 and z, > 0}
and H? =~ H?, hence a 2-manifold with boundary
Example. Goal: Classify compact surfaces with boundary up to homeomorphism.

1. 2-Sphere
S?={zeR®||z] =1}
2. Real Projective Plane

P = RP? = {Unoriented straight lines through the origin € R3
S2

r~—T

Can check that the quotient map S? — P is a local homeomorphism (in fact, a covering map),
that is, every = € S? has a neighborhood that gets mapped homeomorphically to an open set in
P.

3. Torus
—q1 1 _ [0’ 1]2 ~ ]R;2
T=5%5=m0amm =72
(S,O)N(S,l)

Here, ]%R—; means that we identify two points z,y € R? if z — y € Z2. Explicit quotient:

RZ——»8SlxS8t=T
(s,t) k= (e2™2™t) € C x C

this map is a local homeomorphism.

4. Klein Bottle
_ [0,1]?
_{ (0,8)~(1,t) }
(5,0)~(1—s,1)

There exists a map

given by
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(5,8) — (5,2) it € [o, %]

1
(5,4) — (1 — 5,2t — 1) ifte[§,1]

2.2 Invariance of domain

Theorem. U C R" open. If f: U — R" is a continuous injection, then f is open.

proof. Suffices to show that every sufficiently small open ball B(z,¢) C R™ with B(z,¢e) C
is sent to an open subset of R™. Let B be such a ball. By making ¢ smaller, we can assume B
U, then by Jordan Separation Theorem, R™ \ f(0B) has 2 path components. Moreover, f(B) is
path-connected since B.

U
c

Fact. R" \ f (E) is also path-connected

then f(B) and R™ \ f (E) must be the path componenets of R™ \ f(9B), then f(B) is open and
R™ is locally path connected. O

Corollary. If U C R™ and V C R"™ are nonempty open subsets with U = V', then m = n.

proof. Suppose m # n, and assume WLOG m > n. Consider a homeomorphism
f:USV
and compose f with the embedding
R®” — R™ x {0} - R™
to get a continuous injection
ff:U—R™
by theorem, f is open, then f’(U) is open but f'(U) ¢ @ and f'(U) C R™ x {0} =~ R", contra-

diction. O

2.3 Surfaces with boundary
Definition. Let M be connected surface, possibly with boundary.
D C M \ OM embedded closed disk, i.e.

D = f(D?) for a continuous injection f : D? — M \ OM. Can check that f(D?\ §D?) = D\
0D. Then
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My == M\ f(D?\ 0D?)

Remark. M, is independent of the choice of D, up to homeomorphism.
Reason: M connected space, D, D, C M \ 0M embedded closed disks.

Lemma (Disk lemma). There exists a homeomorphism with h(D;) = D,

Definition (Generalization). M be connected space,
D,,..,.D, C M\OM

be disjoint embedded closed disks. then
My = M\ (U int(Di))
i=1

Example (Surfaces with OM # @).
1. Closed disk

D, = 5%\ int(upper hemisphere) = 5(21)

2. Annulus / cylinder
[0, 1]
(0,2) = (1,%)
=~ $2\ nbhd{N, S}
~ Q2

St x [0,1] =

~ N2

3. Mobius band

[0, 1]
0,0)=(1,1—1)

There exists a 2-1 map fron the annulus to the Mobius band given by

1
0. -
3|

1
(5,4) — (25— 1,1—1) ifse [5,1]

(s,t) — (2s,t) ifse

Also:
S2? —nbhd{N, S}

xr~—x

Mobius band =2

= Pua)
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Definition (Handle). An i-handle (of dimension i + j) is a space D! x D’

Note. Abstractly:
D x Di = Di*i
but the product structure on D? x D7 will matter. For i + j = 2:

* 0-handle: DY x D? disk
* 1-handle: D' x D! square
* 2-handle: D? x DO disks

Definition . A 2 dimensional 2-handle body is a topology space M that is built out of 2-
dimensional handles as follows:

0. Start with a finite collection of disjoint 2-dimension 0-handles

kO
My =|_Jh? (0-handles)
i=1
1. Build M, by attaching 2-dimension 1-handles to M. That is,
L
M, = MyU | ] h

J=1

where we attach h; to M, using a continuous attaching maps

ko
f}=(0D") x D' — OM, = |_J 0h?

=1

we’ll assume:
* f; is a topological embedding
* the images of the fj1 are disjoint for j =1, ..., k;
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2. Build M = M, by attaching 2-dimensional 2-handles h?,...,h; to OM, using attaching
2
map

f2:(8D?) x D° — M,
with the same assumptions as above.

So that M, is obtained from M, from gluing 2-disks to some boundary components of M.

Theorem (Rado, 1940s). Up to homeomorphism,
{compact surfaces with boundary} = {2-dimensional 2-handle bodies}

We'll use this without proof.

Definition (Handle Decomposition). An identification of a surface M with a 2-handle body is
called a handle decomposition of M.

Example.

1. Annulus = h° U h!

2. Mobius band = h° U !
3. 82 =hUh?

4. P;) = Mobius band, so

P=h"Uh!' UR?
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Theorem. M, H be spaces, B C M, A C H be closed subsets, and homeomorphisms
f,g:A— B

If g7 o g extends to a homeomorphism of H or f o g~! extends to a homeomorphism of M,
then

HU,H=MUgM
proof. Assume g~ ! o f extends to a homeomorphism F : H — H, then

M —— M

I—lf Ug

hd hd

H—— H’

is the desired homeomorphism. If f o g~! extends over M, replace f and g by their inverses. [

Theorem. If M is connected, then there exists only one way to attach (via an embedding f :
0D? — OM) a 2-handle up to homeomorphism.

proof. Let f,g: 8D? — OM be two attaching maps. First note that f(8D?) and g(6D?) must
be connected components S} and S5 of M. Suppose S} # Si. By attaching disks to S, S,
we get a surface M such that M = Mé). By lemma, there exists a homeomorphism h : M —
M with h(S]) = S5, then g and h™! o g differ by h, which is defined on all of M, then we can
assume S] = S1. Now f, g are both homeomorphism:

f,g:0D* — Si

follows so is g~! o f and it extends to a homeomorphism F : D? — D?, explicitly,

P 0 ifx=0
@ = Vel (7o 5)(i) o #0
By the previous theorem,

2 ~ 2
MU;D?= MU,D
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Proposition. If M is a 2-dimensional 2-handle body, then

M connected <= M, (M without the 2-handles) connected

proof.
(=) Follows since every 2-handle gets attached to a single connected component of M, .
(«<=) Follows because each 2-handle is connected O

Remark. To clasify connected 2-handle bodies, it suffices to classify 2-handle bodies with M # @.

compact connected
closed nonempty surfaces with exactly
connected surfaces one boundary component
homeomorphism homeomorphism
M > My

Theorem. There exists only one way to attach a 0-handle

proof. Attaching a 0-handle is the same as taking the disjoin union with a disk D?. O

2.4 Isotopies

Definition (Isotopy). Let B a space, let

90,91 : B— B

be homeomorphisms. They are isotopic if there exists a continuous map

G:BxI—B
such that
1) Gy =g
2) G1:g1

3) G,: B — Bis ahomeomorphism for all ¢t € I

where G, = G(b,t). Can regard {G, | t € I} is a “continuous family” of homeomorphisms
G, : B — B. Call G an isotopy from g, to g, .

Definition (Ambient isotopic). g,, g; are ambient isotopic if there exists an isotopy G such that

Gy =idgand Gy o gy = g,

Definition. Let G : B x I — B be an isotopy, define
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G:BxI—BxI
by

G(b,t) = (G(b,1),1)

then G is a continuous bijection.

Fact. If B is compact and Hausdorff, then G is a homeomorphism. (by compact-to-Hausdorff
theorem)

Remark. This remains true if B is only locally compact. (idea: replace B by its 1-point compacti-
fication)
Theorem. Let M be compact surface, h! = D' x D!, the 2-dimensional 1-handle,
f,g:(8D') x D' — oM
be embeddings. If f, g are ambient isotopic, then

1 e 1
MuUght = MU, h
proof. We need:

Fact (Brown). M be a compact surface. 9M has a collar neighborhood in M. That is, a
closed set C C M with C' D M and such that there exists a homeomorphism

p:C— (OM) x I
which restricts to the “identity map”
OM — (OM) x {1}

In this case, o' ((OM) x (0,1]) is open in M.

Suppose f,g: (0D') x D' — dM are ambient isotopic, and let
G:(0M)xI— oM
b~e an ambient isotopy between f and g. Because M is compact, G is a homeomorphism. Regard
G as
G:C—C

where C' is a collar neighborhood of M in M. Define the homeomorphism between M Li; A’
and M U, k' by letting it to be id on " and M \ ¢~ (M) x (0,1], and G for the rest. O
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2.4.1. Homeomorphisms of I = [0, 1]

Definition. Homeo(X) = {homeomorphism f: X — X} is a group w.r.t. composition.

Lemma. Homeo([0, 1]) = {strictly monotone bijection f : [0,1] — [0,1]}

proof. Every f € Homeo(]0, 1]) is monotonous by the intermediate value theorem. (exercise).

Conversely, if f : [0,1] — [0,1] is a monotonous bijection then it bijectively send intervals of the
form (a,b),[0,b), (a,1], for 0 < a < b < 1 to intervals of the same type. f is a homeomorphism
because intervals form a basis for the topology of [0, 1]. O

Note. If f € Homeo([0,1]), then
* fincreasing, then f fixes 0 and 1
* f decreasing, then f swaps O and 1

Lemma. If f € Homeo([0, 1]) is increasing, then it isotopic to id, y;.

proof. Define
Gys) = (1—1t)f(s) +ts for (s,t) € [0, 1)
then G, = f and G, = id ;). Moreover, each G, : [0, 1] — [0,1] is a strictly increasing contin-

uous map and fixes 0 and 1, then each G, is surjective and injective and monotone, hence a
homeomorphism. Then G is an isotopy from f to id y;.

Likewise, if f € Homeo(]0, 1]) is decreasingm then it is isotopic to the map that swaps 0 and 1
(given by r(s) :=1—s). O

Lemma. idj, ;) is not isotopic to r.
proof. Suppose {G, | [0,1] — [0, 1]} is an isotopy from G, = id|y ;) to G; = r. Each G, fixes or
swaps 0 or 1. V¢ € [0,1]. Gy (o) € {0,1}. Define (t) := Gy is a path in {0, 1} with

7(0) = Gy(0) = 0 and 7(1) = G1(0) = 1

then {0, 1} is path connected, contradiction. O

Definition (Mapping class group).

MCG(X) := Homeo(X)

~

where ~ identify two homeomorphisms if they are isotopic forms a group called the mapping
class group of X.

Remark.
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MCG(]0,1)) = Z,
likewise, if X = (0,1) or X = R, then
Homeo(X) = {strictly monotone bijection f: X — X}

and
MCG(X) = Z,
Corollary. Every homeomorphism f : (0,1) — (0, 1) extends to a homeomorphism £ : [0, 1] —
[0, 1] defined by:
ﬂ{(),l} = idyg 1y if f increasing

Flioay =rljoy if f decreasing

proof. f defined as above is a monotone bijection and hence a homeomorphism.

2.4.2. Homeomorphism of S*

Lemma. Y f € Homeo(S'). 3f € Homeo(R).

R—— R

s —1 g
commutes, where p(z) := e2™* € §' C C. Moreover f is unique up to

f~f4+nfornelZ

proof.
* Existence of f

Can assume WLOG that f fixes 1, then we have
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~
R

St St

N}
12

[0, 1] [0, 1]

We can assume WLOG that § is increasing. Now define f : R — R by

f(@) = g(z — |z]) + =]

can check that f isa hcimeo~morphism withpo f = fop.
* Uniqueness of fupto f ~ f+n
Suppose f,j : R — R are two homeomorphisms that make the diagram commute. Then
pof=pog
— Vz € R. §(z) = f(x) +n, forn, € Z
—j—-feZ

—> § — f must be constant because every constant map R — Z is a homeomorphism

Remark. If g is increasing, then f satisfies
VmeZ flx4+m)=%+m
Definition. Call f € Homeo(S')

* orientation preserving if f is increasing
* orientation reversing if f is decreasing

Lemma. If f € Homeo(S?) is orientation preserving, then it is isotopic to idg:.
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proof. Let f:R — R be alift of f and define
G:RxI—R

by G(z,t) := (1 —t)f(z) + tz. Then

1. G is isotopy from G, = f to G, = idy (to prove this, use that each G(—,) is a continuous
strictly monotonous surjection)
2. G satisfies

Vm € Z. G(x +m,t) = G(z,t) + m
(again use that f is increasing)

Then consider following diagram

G
Rx1TI R
p xid; p
QL T coeemveerreseeeeneeneeizze: > gt

Then G is an isotopy from f to idg.. Likewise, if f is orientation reversing, then it is isotopic to
r(z):=zforz e S CC. O

Lemma. id,: is not isotopic to r.

proof. Suppose G : S' x I — S! is an isotopy from G, = idg: to G; = r. Define
B=i,C=-1A4=1
vy = Gyp) — Gia)
wy = Gyo) = Gia)
v(t) := {z-coordinate of v, X w,} € R\ {0}
then v is a path in R\ {0} and v(0) > 0 and (1) < 0, contradiction. O
Remark. MCG(S!) = Z,

Definition.

Homeo™ (S') = {orientation preserving homeomorphisms f : S* — S'}

= [idg:] < Homeo(S?)

55



The classification of surfaces

Definition (Arc). A proper subset I C S! will be called an arc if it is path connected. Equiva-
lently, I is an arc if it is homeomorphic to [a,b] C R.

Lemma. Homeo™ (S?) acts transitively on pairs of disjoint arcs in S*. That is, if I, J C S* are
disjoint arcs, and I’, J’ are another pair of disjoint arcs, then there exists f € Homeo™ (S')
such that f(I) =1’ and f(J) = J’.

proof. Can assume

res(p ) =o((52)

after applying a rotation, we can then assume that the initial point (w.r.t. counterclock wise) of
Iisat1e St

:>I:p([a7b])’ j:p<[C,d]),0:a <b<e<dx«l1
can define a piecewise linear homeomorphism f that indices a f : S* — S with f(I) = I’ and

fJ)=J' O

2.5 Handle Slides

Theorem. Let M be compact surface with boundary, S}, S be two components of M. Then
up to homeomorphism, there exists at most two ways of attaching a 2-dimensional 1-handle
to M such that the sets {41} x D? are attached to S:.

More precisely, given
fig:{-1,1} x D! - St ust com
be two embeddings whose image intersect both S} and S?, then either
MUz ht = MU, h!
or
MUgh' = MU,gh!
or both, where R : {—1,1} x D' — {—1,1} x D! is the identity on {—1} x D' and the reflec-
tion z — —z on {+1} x D'
proof.

1) Can assume that f, g both map {—1} x D! to S! and {+1} x D! to S! since there exists a
homeomorphism & : h' — h! that exchanges {—1} x D! and {+1} x D!

2) Can assume that im(f) = im(g) follows because Homeo®(S*) acts transitively on single
intervals in S* and on disjoint pairs.
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3) Can assume that
9" e fliiyxp s {=1} x D' = {~1} x D!

is increasing, since there exists a homeomorphism h’ : h! — h! which restricts to an orien-
tation-reversing homeo on {—1} x D!
4) Can then assume that

gt fliz1yxp = 1dg_1yxpr
since any increasing homeomorphism of {—1} x D' is isotopic to id;_;}, 1, then
gl{—l}xD = f|{—1}xD

this leaves with 2 possibilities:
1) glof |{+1}XD1 is increasing = can assume f = g
2) glof l(+1)xp1 is decreasing = can assume f =go R

Note. A handle slide induces a homeomorphism
(MURY)UA] — (Muhg)ul;}
which is the identity except in collar neighborhood of
O(M Uh}) C MU h;

Remark. Handle slides can also be used to slide 1-handles off of each other
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2.6 Orientations

Definition (Orientations) . Let S be a space homeomorphic to S*. Then an orientation of
S is an equivalence class of homeomorphisms f : S* — S where two such f,g: S! — S are
equivalent if g=! o f is isotopic to idg;.

Definition. Let M be a 2-dimensional handle body, M, be union of all 0-handles. Assume all
1-handles are attached to 0M,, and the images of the attaching maps are pairwise disjoint.
Then an orientation on M is a choice of orientation on the boundary of each handle in M
such that for every 1-handle, the attaching map

£:(dDY) x — OM,
has the property that f, = f|; 11},
Example.

e M = annulus has 2 orientations
* M = Mobius strip has no orientation

Lemma. A connected handle body M either admit zero or two orientations.

Theorem. M is non-orientable iff the Mobius strip can be embedded into M
Example. S?, T orientable, P, K non-orientable.

Definition (Boundary Connected Sum). M, N connected surfaces with OM # @, 0N + @,
fi:{+1} x D' — oM
f :{-1}x D! — 0N

be two embeddings, then the boundary connected sum of M and N is the surface

MY{N:=MU; (D' x DY)u; N

Remark. Up to homeomorphism, M{N does not depend on the choice of f, and f_

proof.

e If M, N are connected, then Homeo(M ) and Homeo(NN) act transitively on the components
of 9M and N, respectively.

* If S is component of 9M and O Nm then Homeo™ (S) acts transitively on intervals in S.
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» If S is a component of 9 M where M is a compact surface, then there exists a homeomorphism
h : M — M which sends S to itself and restricts to an orientation-reversing homeomorphism
of S.

O

Definition (Connected Sum). Let M, N be connected surface, possible without boundary, then
the connected sum of M and Nis the surface

MY N =My Us Ny
where f is a homeomorphism

Remark.

M § N = (M, U Ny,) Ucylinder

(M) UNy)) U (LT UR?)

(M) 8 Ny ) U B2

In particular,

(MY N)qy =My b Ny,

Example. D? | D? ~ D?
In general, for M compact space with 0M,

MyD?*>~M
Lemma. P { P = K where P is the projective plane and K is the Klein bottle.

proof.

Lemma (Fundamental Lemma of Surface Theory).
T{P~KH{P~P{PtP

where T is the torus, P is the projective plane, and K is the Klein bottle.
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Theorem (Classification Theorem). Every closed nonempty connected surface M is homeo-
morphic to exactly one of the following:

1. M orientable

T9 = S24T4.. 4T (with g > 0)
N — —
g

2. M non-orientable

PP = Pt ..t P(with h > 1)
h

Notation:
T((pg)) =T — {p open disks with disjoint closures}

P((ph)) = P — {p open disks with disjoint closures}

Corollary. Every nonempty compact connected surface M with p > 0 boundary components
is homeomorphic to exactly one of the following:

1. T2, with g > 0

(h) -
2. P(p) ,withh > 1

Definition.
* gis the genus of T((pg))

* h is the non-orientable genus or crosscap number of P((ph))
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Monoid of homeomorphism classes of closed connected surface

Now prove the Classification Theorem.
proof.
1. By Rados’s Theorem, can assume M is a handle body

2. If M has more than one 0-handle, then there must a 1-handle A’ connecting two distinct O-
handles, h9, h9

= hYURh'UR] =~ D?

= can replace k9 U h! U k) be a single 0-handle
—> can reduce the number of zero handles

— can assume M ahs only one 0-handle

3. Can restrict to the case where M has no 2-handles because attacing 2-handle is unique up to
homeomorphism

4. We may assume

M =h"U(h} U..AL)
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Now use induction on k, the number of 1-handles.

Fact. If M is a compact connected surface, then every permutation of the components of
ON can be realized by a homeomorphism of N. (Follows from Disk Lemma)

* Base case: if k = 0, then M = h° = D*> = §7), = T((lo))
* Inductive step: Assume k > 0, and let

N:=hU(htU..Uh;_,)
Case 1: M orientable and hj, is attached to a single component of N. Can assume
M = N fannulus
~ 7@ o2
= Tip) 1502)

Case 2: M orientable and hj, is attached to two distinct componenets of ON, then N has at
least 2 componenets. By induction hypothesis,

~ 7(9)
N:Tp)

= p 1)hS

NTp 1)hT

(g+1)
(r—1)

Case 3: M is non-orientable and hj is attached to a single boundary component.

~

~ ph) ~ p(h)
M = N fannulus = Py f 5(22) >~ Pt

or

~ — p (h+1)
M2 N§ Py =Py 1 Py = By

or

~ (9 ~ p(2g+1)
M =Ty, b Py = Py,

Case 4: M is non-orientable and hj, is attached to two distinct components of N, then ON
has at least 2 components, N = N’ 522 , then

’ ~ h+2
M= N'§T, = Py} 4T, = P

or

(9) _ pl29+2)
M= N4 Koy =Ty 8 Ka) = By
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Chapter 3

The Fundamental Group

Definition (Pointed Space). A pointed space is a pair (X, z,) where X is a topological space
and the “basepoint” z, € X is a point. The fundamental group is a topological invaraint for
pointed spaces.

3.1 Homotopies

Recall. A path in X is a continuous map
f:[0,1] — X

Concatenation of Paths:

f,9:10,1] — =z paths with f(1) = g(0)
forms new path

f(2s) if s € [0, 3]
g(2s—1)if s € [5,1]

(fxg)(s) = {

Definition (Homotopy). f,g: X — Y be two continuous maps. A homotopy from f to g is
a continuous map

H:XxI—Y

such that H(—,0) = f and H(—,1) = g. If such H exists, then f and g are called homotopic
denoted f ~ g.

Note. Can regard equivalence
{Ht = H(_’ t)}

as a continuous family of continuous maps H, : X — Y.
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X
z - (x,1) 9

X xI - 7. s Y
z - (z,0) h

X

Definition (Path Homotopies). f, g : I — X paths with f(0) = g(0) and g(1) = g(1). fand g
are path homotopic if there exists a homotopy

H:IxI—X

from f to g such that for all ¢ € I,

denoted
f=,9
which is an equivalence relation on paths in X. And
[f]:{g | g a path in X with 9=, f}

is the path homotopy class of f.

Proposition. Suppose f(1) = g(0), if f'~, fand g’ ~, g, then f’ * g’ >~ f * g.

proof. Choose path homotopy
F:IxI— X from f to f G:IxI— X fromg tog

then we can define a path homotopy from f’ x g’ to f x g:

F(2s,t) if s € [0, 3]

(F*G)(s,t) := {G(Qs— 1,t)if s € [%71]
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Definition (Loop). Let (X, z,) be pointed space. A loop in X based at z is a path
f:I—X
such that f(0) = f(1) = z,

Note.

: - I oI
{loops f: I — X based at z,} JaiN {continuous map f : (E’ %) — (ac,xo)}
Definition (The Fundamental Group). The Fundamental Group of (X, z,) is the set

{loops in X based on z,}
I, (X, zg) = °

path homotopy
={[g] | g a loop in X based at z,}

with concatenation of loops defines a binary operation on II, (X, z):

Vi1 lg] € IL (X, o). [f]% [g] := [f * g]

Theorem. IT, (X, ) is a group with this operation.

proof.
1. % is associative
Let [f],[g], [h] € I, (X, z,). WTS:
(fxg)xh=, fx(gxh)
0,1] =[f,g,h,h]  [f, [, 9,h]
then
(frg)xh=(fx(gxh))ok
where k : [0,1] — [0, 1] is the PL. homeomorphism given by

0.4 — [0.}]
"4 72
[1 17 . 1 3]
4’ 2] 1274
1 7 (3

=1 — |1
2] =[]

and k ~id, ;) via a homotopy that fixes 0 and 1, e.g.

kt(s) = (1 — t)k(S) + ts
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follows that
(fxg)*h ) (f*(g*h))e idp )
=fx(g*h)
2. II, has an identify element
Lete, :I — X be the constant path given by

Vsel.e, (s):=m

proof. Construct
= Zg ift<2s—1
(5,8) = f( t+1)1ft>2s—1

3. II; has a inverses

Let [f] € I, (X, z,) and
Vsel. f(s):=f(1—s)
Claim. f*?zp €z, zpf* f

proof. Construct

B F(2s(1 — 1)) ifs <
H(s,t) := {7((25 —1)(1—t)+t)ifs>

N~ N[~

is a path homotopy from f * f to e,,- Similarly can construct one from fxfto €z,

Therefore II, (X, z,,) forms a group.

Theorem (Induced Maps). Let f: (X, z,) — (Y,y,) be a continuous map with f(z,) = y,.
The induced map is

[ (X, 2g) — T1 (Y, )
[p] = [fop]

such that
1. f, is well-defined
2. f, is a group homomorphism:

fo([plla]) = f.([p]) fi(la])
(1dn (X,z0) ) ldn (X ,zg)
4. (feg)="fio
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proof.

1. If H : I x I — X is a path homotopy between p, and p,, then fo H : I x I — Y is a path
homotopy between f o p, and f o p,, thatis, [f o p] depends only on the path homotopy class

[p].
2. Let [p], [¢q] € II; (X, ), then

(fe(pxq)(s) = f((p*q)(s))

4. (feg)lp) =[(fog)eop]=1[fe(gop)
= f.([g°p]) = £.(9.([p]))
= (f.o9.)(lp])

Remark. Homeomorphic pointed spaces have isomorphic fundamental groups.
Corollary. If f is a homeomorphism, then f, is group isomorphism.

proof.
[ (X,2) = (Y,y,) homeo
= f1:(Y,yy) = (X,7)

hence f, and ( f‘l)* are inverse of each other, and the isomorphism class of I, (X, z,) is a
topological invariant for pointed spaces. O

Example. IT, (R", z,) = {[%OH

Reason: Any loop f:[0,1] — R" based at z, € R" is path homotopic to e, via “Straight line
homotopy”:

feisy = (L= 1) f(s) + tzg

Example. X C R” convex, z, € X, then II, (X, z,) = { [e%] }, proof same as before.
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Definition (Simply connected). X is simply connected if it is path connected and
Va, € X. IL, (X, ap) = {[e]}

and is independent of the choice of z,, since z is path connected.

Remark. Any convex subspace of R™ is simply connected.
Example. IT, (S', z,) = (Z, +)
Specifically, let w,, : [0,1] — S* be the loop

. S2minS
wn(s) =€

when n > 0, w,, turns counterclockwise for n loops; when n < 0, w,, turns clockwise for —n loops.
Then the map

nr— |w,]

is an isomorphism.

Theorem. I, (X x Y, (z,¥y)) = I, (X, zo) x I (Y, y,)

Direct product of group with
component-wise multiplication

proof. Letpy: X xY — X py: X xY — Y be the projections. Then the isomorphism

IL (X XY, (z9,90)) — I (X, z0) x IL (Y, yp)
is given by
11— ((x), (LD (py), (D)

inverse:

([fils [fo]) = [(f15 f2)]
Example. IT, (T) = II, (S* x ') = 11, (S') x I, (S*) = Z x Z = Z?
Theorem. IT, (S™, z)) = {e} for n > 2

proof.

Lemma. For n > 2, every loop p in S™ based at z, € S™ is path homotopic to a loop ¢ that
misses —z, the antipode of z,,.
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proof. Letp:[0,1] — S™ be a loop based at z, and assume WLOG that z, = (0, ...,0,1) €
S™, the north pole, and z, = (0, ...,0,—1) € S™, the south pole. Let the open south hemi-
sphere be

V:i=85"N(R" x (—00,0))
and
U:=p (V) <C[0,1]

so U is an open subset of (0,1) C [0,1]and U D p~!(—=,), follows that U is a countable union
of disjoint open intervals I, C [0, 1]. The I, form an open cover for p~—!(—z,), so it’s closed
and compact, meaning there exist a finite subcover

{11, }

since the I, are disjoint, none of the I, where a # aq, ..., oy, contain points of p~!(—=),
hence

k
—zy &p ([o, 17\ U I%)

it’s enough to show that each p|;— is path-homotopic to a path ¢; that misses —x,. Let I :=
I, for some i and write

I=(a,b)for0<a<b<1

then

p(7> = p([a, b]) - p((a, b)) = p(I)
%
—s p(a),p(b) € BV = 1 = §7 A (R™ x {0})

N

after applying a homeomorphism, we can regard p|, ,; as a path in
Dr =~V

with endpoints in D™ = S"~!. Moreover, since n > 2, S*! is path connected, there exists
a path ¢; in 9D™ = 5™ from p(a) to p(b). Finally, ¢; =, Plia,p) Via a straightline homotopy
in the convex set D™ C R™ and ¢; misses the point 0 € D", which corresponds to the point
zy €V = D", O

Let [p] € II,(S™, z,) for n > z. By lemma, we can assume
im(p) C §™ = {—a,} = R"

then p =, e, , meaning [p] = [e,, | and

IL,(5", 20) = { [ex, | }
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Remark. S™ is simply connected if n > 2.

Fact (Poincaré Conjecture; shown by Perelman). Every closed simply-connected 3-manifold
M + @ is isomorphic to S3.

Also true for 2-manifolds:
Fact. Every closed simply-connected 2-manifold M +# @ is isomorphic to S2.

But not true for n-manifolds with n > 4.

Example. S? x S? is simply-connected, but not homeomorphic to S*.

3.2 Fundamental Group of S

Theorem. For n € Z, let
w, :[0,1] — S*
5 — e2mins
Then
®:7Z —1I1,(5)
n— [w,]

is a group isomorphism.

proof. First show that ® is a homomorphism. NTS: ®(m + n) = ®(m) + ®(n) or |(w,,,,] =
[w,, * w,]. Note that

wm+n(3) — e2ﬂ'i(m+n)s
wm(s) — e?ﬂms
w (S) — eQwins — e27rz'(m+ns)
n
define
6:[0,1] — R
2sm if s < %
S ] 2
m+ (2s—1)if s > 5

then @ is a continuous path in R from 0 to m + n and
(Wi * Wy )(5) = €2700)

Now prove that ®(n) := [w,,] is a bijection:
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Let

g:R— St

s 627”8

Fact. g is a covering map

Definition. Given a continuous map f : Y — S'. Alift of f through q is a continuous map
f:Y — Rsuch that go f = f. The diagram

R s

Q

f 27mis

Yy —— St e
Commutes.

Example. w, (s) = €2™ = q(ns) € S, then &, (s) := ns € R is a lift of w,, through ¢ : R — S1.

Lemma (Unique Path Lifting Property, UPLP). If p : I — S! is a path and £, € ¢ !(p(0)),
then there exists a unique lift 5 : I — R of p through ¢ such that 5(0) = z,.

proof. q:R — S! given by q(s) := e*™*, p: [0,1] — S! path with z, := p(0), £, € ¢ ' (zg)-
WTS: there exists a unique path 3 : [0, 1] — R such that p(0) = z; and g p = p. Assume
WLOG that z, = 1 € S*. Then ¢ !(z,) = ¢~ 1(1) = Z C R. Can assume WLOG that £}, := 0 €
R. Write

St=vuv
where U = S\ {1} and V = S\ {—1}, then

g U)=R\qg'(1)=R\Z=| |[(k,k+1)
keZ

1
—1 _ -1 _ —
g (V)=R\g ' (-1)= R\ +Z= l|r|(k 2,k+2)
€z
Now letp : [0,1] — S* be a path with p(0) = 1 =: z,. Thenp~*(U) Up~1(V) is an open cover
of [0, 1], which has Lebesgue number ¢ > 0 for this cover. If we choose n > % then for i =

1,..,n,each [=2 1] isin p~!(U) and in p~*(V'). p maps each [=21, 1] toUorVorboth we
w111 show that
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Vi =0, ...,n. 3 a unique lift p; of p|[0’i} .p(0)=0€eR

induct on i:
* = 0: Define p,(0) :=0€ R
* ¢ > 0: Assume we have already constructed the lift p,—; of p| [0,i1] - By construction,

([ cvrcy
n n

for simplicity, assume

let k € Z be such that

() etk o)

Note: g restricts to homeomorphism (k, k + 1) — U so we can define

) {r on [0, 1]
p; = -1

(q|(k,k+1)) °p [=1,1] on [ n ’n]

n

Easy to see: p, is continuous and

qop; :p‘[oﬂ

then p, is a lift of p\ through q.

Uniqueness: Suppose p, is another lift of p| [0
* On [0, =], induction implies p; = p;
* On [=1, 2], the lifting property implies

n’n
qoP; =q°p;
Moreover, p; and p; both map [=2, £] to (k,k + 1) (can be seen since they agree at =2

and since p; must map [=1, ] to a path components of ¢~ (U), follows that p; = p; on
=1 1] because q is injective on (k, k + 1).

RRED

O

Lemma (Path Homotopy Lifting Property, PHLP). If H : I x I — S is a homotopy and f[:)
is a lift through g of H|;, (o), then there exists a lift H of H through g such that H|, (0} =
H0 Moreover, if H is a path homotopy, so is H.

proof. WTS: There exists a lift H : I x X — R of H extending H,. To define H, divide I x

I into squares of the form
1 g 1 g
w5
n n n n
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where n is large enough so that each H (I, ) isin U or in V For each i =1, ...,n, use a local
inverse of ¢ : R — S to extend the given 11ft HO to lift H 1 of H I

Note: [,y N1y, 1 = {i} x [0,1] = [0,1]

= HZ o HZJrl j must agree on I, ; N I, ; by the UPLP.

=> By the piecing lemma, we obtain a well-defined lift of H|,, [0,1]- Now proceed inductively
to fill up the square, get a lift H of H.

Exercise: If H is a path homotopy, then so is H. O

Remark. Given
* path p,,p; in ST with p, ~ » Po
* lifts p,, p; through ¢ with p,(0) = p;(0)

Then p, ~, p;. In particular, p,(1) = p;(1).
Now suppose ®(m) = ®(n)

[wWin] = [w]

wmpn

By “PHLP” &, ~, @, where @, (s) = ms, &, (s) = ns
G (1) = 07;(1)

m=n

Ll

so @ is injective. Now let [p] € II, (S*, 1), then p is a loop in S* based z, =1 € S*. Letp: I —
R be the lift of p staring at £, := 0 € R,

q o p = p (since p is a lift)
g(B(1)) = ¢ L(1) = Z
(1) eq (1) =2
) = n for an integer n € Z
A @, are both paths in R from O to n
,t) == (1 —1)p(s) + &, (s) € Ris a path homotopy from p to &,
oHisa path homotopy from w,,

MHHHHIHHHH

So ® is surjective, hence an isomorphism. O

Fact.p : I — S* path, £, € ¢~ (p(0)), then there exists a unique lift 5 : I — R of p through
g such that p(0) = &,
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3.3 Dependence on the base point

X space, z,,z; € X be points in same path component. Let « : [0,1] — X be path from z, to z;.

Can define a map
Q- Hl(Xaxl) — Hl(XaxO)

[p] — [a*p * @]

where p is a loop based at z;.

Fact.

* «, is well-defined ([« * p * @] depends only on [p])

* q, is an isomorphism with inverse ()" = (@),

* If o, 8 are composable paths, then (a * 3), = a, © 8,
* «, depends only on [a]

So: If X is path connected, then the isomorphism class of II, (X, z,) is independent of the
choice of z.

Proposition. Let f,g: A — B be homotopic continuous maps, with homotopy F': A x I —
B. For a, € A, let

a(t) := F(agp,t)

then the following commutes:

HByg(bO)

9«

T4, 4(ao)

U5 fp,)

proof. See book, page 228.
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3.4 Homotopy invariance of I1,

Definition (Homotopy Equivalence). X,Y space, f: X — Y continuous. f is a homotopy
equivalence if there exists a continuous map g : Y — X such that

gOf’iian.nd foggidy

In this case, g is called a homotopy inverse of f and X and Y are called homotopy equiv-
alent, denoted

X~Y
Example. Every homeomorphism is a homotopy equivalence.

Definition (Contractible). X is Contractible if

X ~ {1 point}

Easy to see:
X Contractible <= idx ~ ¢,
where
Cpy ' X — X
Tz
Example. R™ is contractible because
idgn >~ ¢

via the homotopy
H(z,t) := (1 —t)z where z € R",t € [0, 1]
Like wise, every convex A C R™ # @ is contractible.
Example.
R? — {0} = St x (0,00) ~ S* x {1 point} == S!
Likewise

R™ — {0} ~ Sn—l

Theorem. If f : X — Y is a homotopy equivalence, then
fo I (X, @) — IL (Y, f(20))

is an isomorphism for any z, € X.
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proof. Let g:Y — X be homotopy inverse for f. Consider four fundamental groups:

a*
ldH1 (Xa xO)
I, (X, zg)
Then

g.° f. = a, = g, injective

foe 9. =B, = f, injective
g, invertible = g, o f, = o, = f, invertible

3.5 Degree

Definition (Degree). f : S' — S! continuous. Consider

[0’ 1] Q|[0 1] g1 f g1
\_/

f= f°9‘[0,1]

Let ' : [0,1] — R be a lift of f” through g, then the degree of f is defined by
deg(f) = f'(1) — f'(0)

Note. This independent of the chosen lift ' of f’ because any two lifts differ by

ffaff4+nforneZ

Proposition. if f,g : S — S! are homotopic continuous maps, then

deg(f) = deg(g)
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proof. Let F: S' x I — S! be a homotopy from f and g. Define
F':IxI—¢S
by F’ := F o (g|; x id;). Let f’ be lift of f* and F” be a lift of F’ extending f".

~/

(0,1) —F— (1,1
h h+nneZ
(0,0) f—> (1,0)
By definition of degree:
deg(f) = F’(1,0) — F’(0,0)
deg(g) = F’(1,1) — F’(0,1)
deg(f) — deg(g) = F'(1,0) — F’(0,0) — (F"(1,1) — F’(0,1))
) _

Example. Use this to show

deg(f) =n<= f~themapze€ St r— 2" € S’

Corollary. if f,g: S' — S! continuous, then

deg(f o g) = deg(f) deg(g)

proof. Let m :=deg(f), n := deg(g), then
f=2z" and g~ 2"
foge ()" = s

deg(f e g) = nm = mn = deg(f) deg(g)

Corollary. if f : S* — S! is a homomorphism, then
deg(f) = £1

in fact, if f is orientation preserving then deg(f) = 1; if f is orientation reversing then
deg(f) = —1.
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proof.
deg(f) deg(g) = deg(f o f7)
= deg(idg1)
= deg(z!)
=1
hence deg(f) € Z* = {+1}. O

Proposition. If f : S — S! extends to a continuous map F : D?> — S, then

deg(f) =0

proof. Follows because in this case

f = constant map =~ (z — 2°)

since D? is contractible. O
Note. Recall that
R? — {0} = St
=11, (R? — {0}) = II,(S') = Z
can also be see as follows:

I, (R* — {0}) = II, (S x (0,00))

but I, (R™ — {0}) = I, (S™) = 0 for n > 2

Definition. Let f : S' — R? — {0} be continuous, can define f : S — S* by

f(z)
|£ ()]

f(z) =

can define

deg(f) = deg(f)
—_———
"winding number"

intuitively, how many times f wind around O.
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3.5.1. Applications

Definition (Retraction) . Let X space, A C X subspace. A retraction from X to A is a
continuous map r : X — A such that

Theorem. There exists no retraction r : D> — S*.

proof. Suppose such retraction r exists, then
deg(r|g1) = deg(idg:) =1

but also r|g: extends to the entire D?, namely r, so deg(r|g:) = 0. Contradiction.

Theorem (Fundamental Theorem of Algebra). Let
P(z)=2"+a, 12" 1+ .. +aq

be a complex polynomial with n > 0. Then P has a zero in C.

proof. Let
M = max{|ag|, ... |a, |}
and choose k > 1. Then for z € kS*, the circle around 0 of radius &,
P2) = (14 2220 4 20) = 2n(1 4+ B(2) £ 0
where [b(2)| < 1 since z € kS'. So f = P|, 5 is amap
f: kSt — C—{0}

Moreover, f is homotopic to 2" |,¢1 via

H(z,t):=2"(14+(1—1t)b(2)) #0
= deg(f) = deg(z"[xs1) =n >0

Now suppose P has no zeroes. Then P takes values in C — {0}, so f extends to the map
Plip2 : kD? — C — {0} = deg(f) =0
Contradiction.

Remark. Suppose 0 < k; < k, are such that
deg(P’k151) # deg(P\k231)

Then P must have a zero in {z € C | k; < |2]| < ky}-
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Definition. f : I — S! continuous such that f(1) = —f(0). Can define

deg(f) = (1)~ f0) € 5 +2

where f: I —s R s a lift of f.

Theorem. There exists no continuous map f : S — S! such that Vz € S2. f(—z) = —f(x)

proof. Suppose such an f exists, then
deg(fls1) =0
since f|q: extends to the northern or southern hemisphere. But
St=I1 Ul
then
deg(f|g:) = deg(f];, ) + deg(fl; )
= 2deg(f|1+) since f(—z) = —f(z)
=2 (n + %)

=2n+1%#0

Theorem (Brouwer). Every continuous map f : D> — D? has a fixed point x with f(z) = x.
proof. Suppose f has no fixed point, and define
g:D? — 0D?

with g(z) be the intersection of line = f(z), one can check g is continuous and g|;p: = idgp2,
follows that g is a retraction from D? to D?. By no-retraction theorem, contradiction. O

Note. Not true if D? is replaced by D? \ 0D? =~ R?.

3.6 Seifert-van Kampen Theorem

Definition (Word). Let G, G, be groups. A word in G, and G, is a finite sequence

(wq,wy, ...,w, ) where w; € Gy or G,
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Definition (Free Product). The free product of G, and G, is the set

{words in G; and G,}

~

Gl *G2 =

where ~ is generated by:
* If w; and w,;, belong to the same group, then

(..., w,“ w1+1, ...) a (...,wiw,i+1, ...)

* If w, is the identity element of G, or G,, then

(..., wl_l, w,i, wz_,’_l, ...) [ad (...’ wl_l’ ’LUH_l, ...)
Note. G, * G, is a group with multiplication given by concatenation.

Theorem (Univeersal Property). Given homomorphism ¢, : G, — H, i = 1,2, there exists a
unique homomorphism

p:GxGy— H

that extends ¢, and ¢,:

where i (w) := [(w)], w € G;.

Example.

Fri=L*ZLx--xL=17*
N —— —

k<oo

is a free group on k generators.
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Proposition. Any group H with k < co generators can be written as

Fy
N

H =~

for a normal subgroup N < F.

proof. Let hq,..., h; be generators of H, and define

®,:7— H
n+— (h;)"
The ®, induce a surjective map ¢ : Z** — H. Define N := ker(¢), then
*xk
I Z
ker(¢p)

1%

2|

Remark. N is the set of relations.

Definition (Group Presentation). If H is finitely generators h4, ..., h

;» then
H =~ (hy, ... h | N)

If N is also finitely generated as a normal subgroup of F), by elements r, ..., ;, then write

H == (hy, ... hy | rq, e, 78)
In this case, H is finitely presented.

Note. Iff k; # k,, then

Fy, # By,

proof. TFollows because the abelianizations of F, and F}, are ZF: and Z*» and

Zk  7k2

Theorem (Seifert-van Kampen). Let X be space, X = AU B where A, B C X are open and
A N B is path-connected. Pick z, € AN B and consider

Ya
II, (AN B,z,) — I (4, z)

Yp l l‘PA
¥B
I, (B, zy) — I (X, z)
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Where all maps are induced by inclusions. Then the homeomorphism equation
¢ 111 (A, zg) * 11y (B, z9) — I3 (X, z)
induced by ¢ 4 and ¢ is surjective and

the smallest normal subgroup

ker(p) = { containing all ¥ 4 (7)Y g(y)!
for all vy € I, (AN B, z)

Note. So:

I, (A, zy) * 11, (B, )

Hl(X7x0> (v,), c HI(A N B,wg)wA(/V) = wB(’V)'

IR

Special cases:
1. X, A, B as before. If AN B is simply connected, then

IL (X, zg) = 11, (A, 20) * 11, (B, )
Application
(X,zy), (Y,y,) pointed spaces, then the “wedge sum” of X and Y
Xuy

To ~ Yo

XVY :=

Let z, :==Z; =Y, € X VY and suppose:
* x4,y are closed in X, Y, respectively
* z,,Yy have open neighborhoods in X, Y, respectively, which deformation retract to z,, y,, then

I(X VY, z) =1L (X, z,) «IL (Y, )

Definition (Deformation retraction). A deformation retraction of X to A C X is a homotopy
H: XxX—X

such that

e Vx e X. H(z,0) ==z

* Vze X.H(z,1) € A

* VeeAVtel H(z,t) ==z

Example.
* II,(S* v S') = Z x Z. More generally:

* X A, Basin SvK. If A and B are simply connected, then so is X. Follows because

I, (A, zy) * I, (B, )

I, (X, 7y) & =0%0=0
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can be used to show that IT, (S™) = 0 for n > 1.
* X,A,Basin SvK, and II, (B, z;) = 0. Then

II, (A, z

where N is the normal subgroup generated by the image of
Ya 1L (AN B, zg) — 11, (4, z)

Example . X = P=MUD? A=nbhd(M)C P and B = nbhd(Dz) C P, then II,(B,z,) = 0.
Follows

3.7 Fundatmental groups of surfaces

3.7.1. Surfaces with OM + @
Claim.

I, (T((ﬁ)) ~ 729 = F,,
I, (P((lh))) ~7h=F,

proof. Start with a closed surface M =T'9 or M = P*) and realize it as a polygon with
identified edges. Poke a hold in the middle of the polygon to get M. The result is homotopic to

S'U...US! where k=2gork=nh
k

Example.
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3.7.2. Surface without boundary
Ley M be closed connected surface. Poke a hold and put it back in.

M = AU B where A =nbhd(M) and B = nbhd(D?)

follows that

=0

e e
I, (M) 2 I, (M) ) * I1, (D?)
L, (My)  F,

o (0My) N

where N is generated by the image in II, (M(l)) of IT, <8M(1)).
M = T9)

=1

Z[awbz‘]>

H1<M) - <a1, b17 ceey a/g, bg

where [a;,b;] = a;b;a;'b;* be the commutator.

MPph

II,(M) = <a1, ey Q| alfag...af»

Definition (Abelianization II,). Let (X, z) path connected.

— Hl(Xa 330)

Hl(X7wO)ab : N

where N is the group generated by all commutators.

Definition (First Betti Number). Suppose X is path connected and z, € X, II(X,z,) , has
finite rank, then the first Betti number of X is

Theorem. M a connected 2-dim handlebody with OM + ¢, then
X(M) = 1—b,(M)

can be shown without using that X (M) is a topo invariant.
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