
Introduction to Topology
MAT 661

George Miao
gm@miao.dev



Contents

1. Basic Point Set Topology ...................................................................................... 3
1.1. Real ...................................................................................................................................... 3
1.2. Metric Spaces ....................................................................................................................... 5
1.3. Topological spaces ................................................................................................................ 7
1.4. Summary .............................................................................................................................. 9
1.5. Bases for topologies ............................................................................................................ 10
1.6. Continuity .......................................................................................................................... 12
1.7. Closure and Interior ............................................................................................................ 14
1.8. Homeomorphisms ............................................................................................................... 17
1.9. Linear and affine maps ....................................................................................................... 20
1.10. Topological Properties ...................................................................................................... 22
1.10.1. Separation Properties .................................................................................................... 22
1.11. Compactness .................................................................................................................... 23
1.12. Compactness in ℝ ............................................................................................................. 26
1.13. Product Topology and compactness in ℝ𝑛 ........................................................................ 26
1.14. Lebesgue number lemma .................................................................................................. 29
1.15. Connectness ...................................................................................................................... 29
1.16. Connectness in ℝ .............................................................................................................. 30
1.16.1. Application .................................................................................................................... 31
1.17. Path Connectness .............................................................................................................. 31
1.18. Construction of quotient spaces ........................................................................................ 34
1.19. Disjoint Union and gluing ................................................................................................. 36
1.20. Simply connected space .................................................................................................... 38
1.21. Jordan Curve Theorem and Schoenflies Theorem ............................................................ 38
1.21.1. Situation in higher dimensions ...................................................................................... 40
1.22. Local flatness and collar neighborhoods ........................................................................... 41
2. The classification of surfaces ............................................................................. 42
2.1. Manifolds ........................................................................................................................... 42
2.2. Invariance of domain .......................................................................................................... 45
2.3. Surfaces with boundary ...................................................................................................... 45
2.4. Isotopies ............................................................................................................................. 50
2.4.1. Homeomorphisms of 𝐼 = [0, 1] ......................................................................................... 52
2.4.2. Homeomorphism of 𝑆1 .................................................................................................... 53
2.5. Handle Slides ...................................................................................................................... 56
2.6. Orientations ........................................................................................................................ 58
3. The Fundamental Group .................................................................................... 63
3.1. Homotopies ........................................................................................................................ 63
3.2. Fundamental Group of 𝑆1 .................................................................................................. 70
3.3. Dependence on the base point ............................................................................................ 74
3.4. Homotopy invariance of Π1 ................................................................................................ 75

1



Contents

3.5. Degree ................................................................................................................................ 76
3.5.1. Applications ..................................................................................................................... 79
3.6. Seifert-van Kampen Theorem ............................................................................................. 80
3.7. Fundatmental groups of surfaces ........................................................................................ 84
3.7.1. Surfaces with 𝜕𝑀 ≠ ∅ ..................................................................................................... 84
3.7.2. Surface without boundary ............................................................................................... 85

2



Chapter 1

Basic Point Set Topology

1.1 Real

Definition (Open balls) . 𝑥 ∈ ℝ𝑛, 𝑟 > 0, 𝐵(𝑥, 𝑟) ≔ {𝑦 ∈ ℝ𝑛 | 𝑑(𝑥, 𝑦) < 𝑟}

Definition (Open set) . 𝑢 ⊆ ℝ𝑛 is open if every 𝑥 ∈ 𝑢 an interior point of 𝑢, meaning ∃𝑟 >
0. 𝐵(𝑥, 𝑟) ⊆ 𝑢.

Remark . r-balls are open.

Theorem (Continuity) . Let 𝑓 : ℝ𝑘 → ℝ𝑙. 𝑓  is continuous iff for every open set 𝑣 ⊆ 𝑅𝑙, the
preimage 𝑓−1(𝑣) is open in ℝ𝑙.

proof.
• “⇒” skipped
• “⇐” Suppose preimages of opensets are open, and let 𝑥 ∈ ℝ𝑘 and 𝜀 > 0. Then 𝐵(𝑓(𝑥), 𝜀) is

open in ℝ𝑙, so by assumption,

𝑓−1(𝐵(𝑓(𝑥), 𝜀)) is open in ℝ𝑘

⇒ 𝑥 is an interior point of 𝑓−1(𝐵(𝑓(𝑥), 𝜀))
⇒ ∃𝛿 > 0. 𝐵(𝑥, 𝛿) ⊆ 𝑓−1(𝐵(𝑓(𝑥), 𝜀))
⇒ 𝜀-𝛿 condition holds at 𝑥
⇒ 𝑓  is continuous at 𝑥
⇒ 𝑓  is continuous on all of ℝ𝑘

□

Definition . 𝑋 ⊆ ℝ𝑘, 𝑌 ⊆ ℝ𝑙 subsets, 𝑓 : 𝑋 → 𝑌 . 𝑓  is continuous at 𝑥 ∈ 𝑋 if

∀𝜀 > 0. ∃𝛿 > 0. 𝑓(𝐵𝑋(𝑥, 𝛿)) ⊆ 𝐵𝑌 (𝑓(𝑥), 𝜀)

where 𝐵𝑋(𝑥, 𝛿) ≔ 𝐵(𝑥, 𝛿) ∩ 𝑋 and 𝐵𝑌 (𝑦, 𝜀) ≔ 𝐵(𝑦, 𝜀) ∩ 𝑌 .
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Basic Point Set Topology

Definition . 𝑋 ⊆ ℝ𝑛, 𝑈 ⊆ 𝑋 subset. 𝑈  is open in 𝑋 if there exists an open set 𝑈 ′ ⊆ ℝ𝑛

such that

𝑈 = 𝑈 ′ ∩ 𝑋
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Basic Point Set Topology

Example . Let

𝑋 = [0, 2] × [0, 2]

𝑈 = {(𝑥1, 𝑥2) ∈ 𝑋 | 𝑥2
1 + 𝑥2

2 < 1}

𝑈  is open in ℝ2 because 𝑈 = 𝐵((0, 0), 2) ∩ 𝑋.

Example . For every 𝑋 ⊆ ℝ𝑛, 𝑋 is open in 𝑋 because 𝑋 = 𝑋 ∩ ℝ𝑛. But in geenral, 𝑋 ⊆ ℝ𝑛 is not
open in ℝ𝑛.

Theorem . Let 𝑋 ⊆ ℝ𝑘, 𝑌 ⊆ ℝ𝑙, 𝑓 : 𝑋 → 𝑌 . 𝑓  is continuous iff for every 𝑉 ⊆ 𝑌  that’s open
in 𝑌 , the preimage 𝑓−1(𝑉 ) is open in 𝑋.

1.2 Metric Spaces

Definition . 𝑋 any set. A distance function or metric on 𝑋 is a map

𝑑 : 𝑋 × 𝑋 → [0, inf)

such that
(M1) 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦
(M2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
(M3) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) (triangle inequality)

Definition (Metric space) . (𝑋, 𝑑) is a metric space if 𝑑 is a metric on 𝑋.

Example . (ℝ𝑛, 𝑑) is a metric where 𝑑 is the Euclidean distance, i.e. 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖.

Example . (ℝ𝑛, 𝑑′) where 𝑑′ = 2𝑑 is also a metric space.

Example (Discrete metric) . 𝑋 any set, 𝑑 = 𝑑discret where

𝑑discrete(𝑥,𝑦) = {0 𝑥 = 𝑦
1 𝑥 ≠ 𝑦

(𝑋, 𝑑discrete) is called the discrete metric space.

Example . (𝑋, 𝑑) any metric space, 𝑌 ⊆ 𝑋 subset, we can restrict 𝑑 to a map

𝑑|𝑌 : 𝑌 × 𝑌 → [0, inf)

then (𝑌 , 𝑑|𝑌 ) is a metric space, called a (metric) subspace of (𝑥, 𝑑) and 𝑑|𝑌  called induced metric.

Example . 𝑆 is a subspace in (ℝ3, 𝑑Eucl), then (𝑆, 𝑑Eucl|𝑆) is a metric space.
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Basic Point Set Topology

Example . Let 𝑉  be a real vector space. A norm on 𝑉  is a map ‖.‖ : 𝑉 → [0, inf) such that
(N1) ‖𝑥‖ = 0 ⟺ 𝑥 = 0
(N2) ‖𝑐𝑥‖ = |𝑐| ‖𝑥‖
(N3) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖

e.g., on 𝑉 = ℝ2,

• Euclidean norm: ‖(𝑥1, 𝑥2)‖ = √𝑥2
1 + 𝑥2

2
• Max norm: ‖(𝑥1, 𝑥2)‖ = max(|𝑥1|, |𝑥2|)
• Sum norm: ‖(𝑥1, 𝑥2)‖ = |𝑥1| + |𝑥2|

Easy to see: If ‖.‖ is a norm on 𝑉 , then 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ is a metric on 𝑉 , meaning any normed
vector space is a metric space.

Definition (Open balls) . Let (𝑋, 𝑑) be metric space, 𝑥 ∈ 𝑋, 𝑟 > 0. The open 𝑑-𝑟-ball centered
at 𝑥 is the set

𝐵𝑑(𝑥, 𝑟) ≔ {𝑦 ∈ 𝑋 | 𝑑(𝑥, 𝑦) < 𝑟}

Definition (Open set) . Let (𝑋, 𝑑) be metric space. A subset 𝑈 ⊆ 𝑋 is open if every 𝑥 ∈ 𝑈  is
an interior point of 𝑈 , meaning

∃𝑟 > 0. 𝐵𝑑(𝑥, 𝑟) ⊆ 𝑈

Definition (Continuity) . Let (𝑋, 𝑑), (𝑌 , 𝑑′) be metric spaces, 𝑓 : 𝑋 → 𝑌 . 𝑓  is continuous at
𝑥 ∈ 𝑋 if

∀𝜀 > 0. ∃𝛿 > 0. 𝑓(𝐵𝑑(𝑥, 𝛿)) ⊆ 𝐵𝑑′(𝑓(𝑥), 𝜀)

Theorem . Let (𝑋, 𝑑), (𝑌 , 𝑑′) be metric spaces, 𝑓 : 𝑋 → 𝑌 . 𝑓  is continuous iff the preimage
of 𝑑′-open set 𝑉 ⊆ 𝑌  is 𝑑-open in 𝑋.

Theorem . Let (𝑋, 𝑑) be metic space
1. ∅, 𝑋 are open (in 𝑋)
2. the union of any collection of open sets in 𝑋 is open
3. the intersection of any finite collection of open sets in 𝑋 is open

proof.

1. ∅ is open because it contains no non-interior points. 𝑋 is open because every 𝐵𝑑(𝑥, 𝑟) is
contained in 𝑋.

2. Suppose the sets 𝑈𝑖, 𝑖 ∈ 𝐼  are open in 𝑋, and 𝑥 ∈ ⋃ 𝑈𝑖, then ∃𝑖 ∈ 𝐼. 𝑥 ∈ 𝑈𝑖, meaning 𝑥 is an
interior point of 𝑈𝑖 for some 𝑖. So ∃𝑟 > 0. 𝐵𝑑(𝑥, 𝑟) ⊆ 𝑈𝑖 ⊆ ⋃ 𝑈𝑖.
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Basic Point Set Topology

3. Suppose 𝑈1, …, 𝑈𝑛 are open subsets of 𝑋. Let

𝑥 ∈ ⋂
𝑖∈[1,𝑛]

𝑈𝑖

Means ∀𝑖 ∈ [1, 𝑛]. 𝑥 ∈ 𝑈𝑖, then

∀𝑟 ∈ [𝑖, 𝑛]. ∃𝑟1, …, 𝑟𝑛 > 0. 𝐵𝑑(𝑥,𝑟𝑖) ⊆ 𝑈𝑖

Now define 𝑟 ≔ min{𝑟1, …, 𝑟𝑛} > 0

⟹ ∀𝑖 ∈ [1, 𝑛]. 𝐵𝑑(𝑥,𝑟) ⊆ 𝐵𝑑(𝑥,𝑟𝑖) ⊆ 𝑈𝑖

⟹ 𝐵𝑑(𝑥,𝑟) ⊆ 𝑈𝑖

⟹ 𝐵𝑑(𝑥,𝑟) ⊆ 𝑈1 ∩ … ∩ 𝑈𝑛

⟹ 𝑥 is an interior point of 𝑈1 ∩ … ∩ 𝑈𝑛

⟹ ∀𝑥 ∈ ⋂
𝑖∈[1,𝑛]

𝑈𝑖. 𝑥 interior

⟹ ⋂
𝑖∈[1,𝑛]

𝑈𝑖 is open

□

1.3 Topological spaces

Definition . Let 𝑋 be a set. A topology on a set 𝑋 is a collection 𝒯 ⊆ 𝒫(𝑋) of subsets 𝑈 ⊆ 𝑋
called 𝒯-open subsets such that
(T1) ∅, 𝑋 ∈ 𝒯
(T2) any union of members of 𝒯 belongs to 𝒯
(T3) any finite intersection of members of 𝒯 belongs to 𝒯

In this case, (𝑋, 𝒯) is called a topological space.

Example (Every metric space is a top. space) . Let (𝑋, 𝑑) be a metric space. Then

𝒯𝑑 ≔ {𝑑-open subsets of 𝑋}

is a topology on 𝑋.

Remark . Different metrics on 𝑋 may give rise to different topologies on 𝑋.

Example (Discrete top. space) . Let 𝑋 be any set. Then

𝒯 ≔ 𝒫(𝑋) = Powerset of 𝑋

is a topology on 𝑋, called the discrete topology, induced by the discrete metric. 𝑋 with the discrete
topology is called the discrete topological space.
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Basic Point Set Topology

Example (Indiscrete/trivial top. space) . Let 𝑋 be any set. Then

𝒯 ≔ {∅, 𝑋}

is a topology on 𝑋, called the indiscrete topology.

Definition . An open set that contains a point 𝑥 is called an open neighborhood of 𝑥.

Definition (Hausdorff, or 𝑇2) . A topological space is called Hausdorff if for any 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠
𝑦, there exist disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 such that

𝑈 ∋ 𝑥 and 𝑉 ∋ 𝑦

Theorem . Every metric space (𝑋, 𝑑) is Hausdorff.

proof. Let 𝑥, 𝑦 ⊆ 𝑋, 𝑥 ≠ 𝑦. Then 𝑟 ≔ 𝑑(𝑥, 𝑦) > 0. Now define 𝑈 ≔ 𝐵𝑑(𝑥, 𝑟
2), 𝑉 ≔

𝐵𝑑(𝑦, 𝑟
2), meaning 𝑈, 𝑉 are disjoint open neighborhood of 𝑥, 𝑦, thus 𝑋 is Hausdorff. □

Theorem . If 𝑋 has greater than one element, then the trivial topology on 𝑋 is not Hausdorff.

proof. In the trivial topology, the only open neighborhood of any point 𝑥 ∈ 𝑋 is 𝑋 itself. So for
any 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦, there are no disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 such that 𝑈 ∋ 𝑥 and 𝑉 ∋ 𝑦.

□

Example . 𝑋 = {𝑎, 𝑏}, 𝑎 ≠ 𝑏. Possible topologies:
• 𝒯1 = {∅, 𝑋}: trivial
• 𝒯2 = {∅, {𝑎}, 𝑋}
• 𝒯2 = {∅, {𝑏}, 𝑋}
• 𝒯3 = {∅, {𝑎}, {𝑏}, 𝑋}: discrete

Example . 𝑋 = ℝ. Define:

𝒯 = {unions of half-open intervals of the form [𝑎, 𝑏) for all 𝑎 < 𝑏 ∈ ℝ}

𝒯 is a topology on ℝ, called the lower limit topology on ℝ.

Notation: ℝ𝐿𝐿 = (𝒯, ℝ)

Question . How is ℝLL related to ℝ with the usual topology (i.e. the topology induced by the
Euclidean metric)?

Answer: They are not the same. [𝑎, 𝑏) is open in ℝLL but not with respect to the standard topology
on ℝ.

Theorem . Every 𝑑-open subsets 𝑈 ⊆ ℝ is always open in ℝLL.
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proof. Suppose 𝑈 ⊆ ℝ is 𝑑-open, and let 𝑥 ∈ 𝑈 , then 𝑥 is an interior point of 𝑈  with respect to
𝑑. So ∃𝑟 > 0. 𝐵𝑑(𝑥, 𝑟) ⊆ 𝑈  and 𝑈 = ⋃𝑥∈𝑈 [𝑥, 𝑥 + 𝑟), 𝑈  is open in ℝLL. □

Definition . 𝑋 any set, 𝒯, 𝒯′ topologies on 𝑋.

• 𝒯 is finer than 𝒯′ if 𝒯 ⊇ 𝒯′

• 𝒯 is coarser than 𝒯′ if 𝒯 ⊆ 𝒯′

Remark . Lower limit topology on ℝ, ℝLL, is finer than the standard topology on ℝ.

Example . (𝑋, 𝒯) top. space, 𝑌 ⊆ 𝑋.

𝒯|𝑌 ≔ {𝑈 ∩ 𝑌 | 𝑈 ∈ 𝒯}

is a topology on 𝑌 , called the subspace topology induced by 𝒯.

Definition (subspace) . (𝑌 , 𝒯|𝑌 ) is called a subspace of (𝑋, 𝒯).

Theorem . If 𝒯 is induced by a metric 𝑑 on 𝑋, then the subspace topology 𝒯|𝑌  on 𝑌  is induced
by the metric 𝑑|𝑌 .

1.4 Summary

Spaces in ℝ𝑛 with 𝑑 = 𝑑Eucl
⟹ Subspaces of ℝ𝑛

⟹ General metric spaces
⟹ General topological spaces

Question . Is every metric space equivalent (as in homeomorphic) to a subspace of ℝ𝑛 for some 0 ≤
𝑛 < ∞?

Answer: No. We will see that any subspaces of ℝ𝑛 is 2nd countable, but e.g. (ℝ, 𝑑discr.) is not 2nd
countables.

Fact (Nagata-Smirnov) . For all metric space (𝑋, 𝑑), there exists a set 𝐽  (very big, possibly
infinite) such that (𝑋, 𝑑) is homeomorphic to a subspace of (ℝ𝐾 , 𝑑𝑢).

Here:

ℝ𝐽 ≔ {𝑓 : 𝐽 → ℝ}

𝑑𝑢 ≔ uniform metric on ℝ𝐽

𝑑𝑢(𝑓,𝑔) ≔ sup{min{1, 𝑑(𝑓(𝑥), 𝑔(𝑥))} | 𝑥 ∈ 𝐽}
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1.5 Bases for topologies

Definition . Let 𝑋 be set, a collection ℬ ⊆ 𝒫(𝑋) is a base for topology on 𝑋 if

(1) 𝑋 = ⋃𝐵∈ℬ 𝐵

(2) If 𝐵, 𝐵′ ∈ ℬ, then 𝐵 ∩ 𝐵′ is a union of members of ℬ.

Given such a base ℬ ⊆ 𝒫(𝑋), we can define

𝒯ℬ ≔ {Unions of members of ℬ}

Can check: If ℬ satisfies (1) and (2), then 𝒯ℬ is a topology on 𝑋.

Remark . 𝒯ℬ is the coarsest topology on 𝑋 for which all members of ℬ are open. Conversely, if a
topology 𝒯 on 𝑋 is already given, then a base for 𝒯 is collection ℬ ⊆ 𝒯 such that every 𝑈 ∈ 𝒯 is a
union of members of ℬ.

Remark . Every top. space (𝑋, 𝒯) has a base, namely ℬ = 𝒯.

Example . 𝑋 = ℝ, ℬ = {(𝑎, 𝑏) | 𝑎 < 𝑏}. In this case, 𝒯ℬ is the usual topology given by 𝑑(𝑥, 𝑦) =
|𝑥, 𝑦|.

Example . Let (𝑋, 𝑑) be a metric space, ℬ ≔ {𝐵𝑑(𝑥, 𝑟) | 𝑥 ∈ 𝑋, 𝑟 > 0}.

Definition (2nd countable) . (𝑋, 𝒯) is 2nd countable if it has a countable base.

Example . (ℝ𝑛, 𝑑 = 𝑑Eucl) is 2nd countable.

ℬ ≔ {𝐵𝑑(𝑥, 𝑟) | 𝑥 ∈ ℚ𝑛, 𝑟 ∈ ℚ, 𝑟 > 0}

is a countable base.

Definition (Neighborhood base) . Let (𝑋, 𝒯) be top. space. A neighborhood base at 𝑥 ∈ 𝑋 is
a collection 𝒩𝑥 ⊆ 𝒯 of 𝒯-open neighborhoods of 𝑥 such that for every 𝒯-open neighborhood
𝑁  of 𝑥, there exists 𝑁 ′ ∈ 𝒩𝑥 such that 𝑁 ′ ⊆ 𝑁 .

Definition (1st countable) . (𝑋, 𝒯) is 1st countable if every 𝑥 ∈ 𝑋 has a countable neighbor-
hood base.

Example . Every metric space (𝑋, 𝑑) is 1st countable.

proof. Given 𝑥 ∈ 𝑋, let

𝒩𝑥 ≔ {𝐵𝑑(𝑥, 𝑟) | 𝑟 ∈ ℚ, 𝑟 > 0}

and this is a countable neighborhood base at 𝑥. □
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Theorem . 2nd countable implies 1st countable.

proof. Suppose (𝑋, 𝒯) has a countable base ℬ. Let 𝑥 ∈ 𝑋, then

𝒩𝑥 ≔ {𝐵 ∈ ℬ | 𝑥 ∈ 𝐵}

is a countable neighborhood base at 𝑥. □

Caution . The converse is not true.

Example . (ℝ, 𝑑 = 𝑑disc) is 1st countable since 𝒩𝑥 = {{𝑥}} is a countable neighborhood base at 𝑥,
but it is not 2nd countable.

Theorem . If 𝑋 is an uncountable space with the discrete topology then 𝑋 is not 2nd
countable.

proof. 𝑋 uncountable & discrete
⇒ Evert set in 𝑋 is open
⇒ Evert 1-point set in 𝑋 is open
⇒ If ℬ is any base for 𝑋, then every 1-point set must be union of members of ℬ
⇒ Every 1-point set must be a member of ℬ
⇒ ℬ contains uncountably many members
⇒ 𝑋 is not 2nd countable

□

Example . 𝑋 = ℝLL (ℝ with lower limit topology) is 1st countable but not 2nd countable.

proof. 𝒩𝑥 = {[𝑥, 𝑥 + 𝑟) | 𝑛 ∈ ℚ+} is a countable neighborhood base at 𝑥, so 𝑋 is 1st countable.
But let ℬ be any base for ℝLL. For a point 𝑥 ∈ ℝ, choose¹ a base set 𝐵𝑥 ∈ ℬ containing 𝑥 such
that 𝐵𝑥 ⊆ [𝑥, 𝑥 + 1). Consider the map

ℝ ⟶ ℬ
𝑥 ⟼ 𝐵𝑥

It’s easy to see this map is injective because 𝑥 = inf 𝐵𝑥, implies that |ℬ| ≥ |ℝ|, so ℬ is uncount-
able and ℝLL is not 2nd countable. □

¹May requires Axiom of Choice
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1.6 Continuity

Definition (Continuity) . Let (𝑋, 𝒯), (𝑌 , 𝒯′) be top. spaces, 𝑓 : 𝑋 → 𝑌 . 𝑓  is continuous at 𝑥 ∈
𝑋 if the preimage 𝑓−1(𝑣) of every 𝒯′-open set 𝑉  is 𝒯-open. So a continuous map 𝑓 : 𝑋 → 𝑌
induces a map

𝒯 ⟵ 𝒯′

𝑓 ′(𝑉 ) ⟻ 𝑉

Example . Let 𝑋 be any set, id : 𝑋 → 𝑋 be the identity map, and 𝒯, 𝒯′ be two topologies on 𝑋.
When is id : (𝑋, 𝒯) → (𝑋, 𝒯′) continuous?

id : (𝑋, 𝒯) → (𝑋, 𝒯′) is continuous
⟺ the preimage under id of each 𝒯′-open set is 𝒯 open
⟺ each 𝒯′-open set is also 𝒯-open
⟺ 𝒯 is finer than 𝒯′

Remark . The identity map of a top. space (𝑋, 𝒯) is always continuous.

Example . Let (𝑋, 𝒯), (𝑌 , 𝒯′) top. spaces., 𝑦0 ∈ 𝑌 , 𝑓 : 𝑋 → 𝑌  the constant map, i.e., ∀𝑥 ∈
𝑋. 𝑓(𝑥) ≔ 𝑦0. Then 𝑓  is continuous.

proof. Let 𝑉 ⊆ 𝑌  be any subsets, then

𝑓−1(𝑉 ) = {𝑋 if 𝑦0 ∈ 𝑉
∅ if 𝑦0 ≠ 𝑉

then the preimage of any 𝒯′-open set is 𝒯-open, 𝑓  is continuous. □

Remark . Constant maps are always continuous. Furthermore, if 𝑋 contains only one point, then
any map 𝑓 : 𝑋 → 𝑌  is continuous.

Definition (Closed sets) . Let (𝑋, 𝒯) top. space, 𝐴 ⊆ 𝑋 is closed if 𝑋 − 𝐴 = 𝑋 \ 𝐴 is open.

Example . 𝑋 = ℝ, 𝐴 = [0, 1]. 𝐴 is closed in ℝ because

𝑅 − [0, 1] = (−∞, 0) ∪ (1, ∞)

Caution . There exist sets that are neither open nor closed. And there exist sets that are both
closed and open called clopen. For example, [0, 1) ⊆ ℝLL is clopen or in any space 𝑋, the sets ∅, 𝑋
are clopen.

Definition . 𝑋 is connected if the only clopen subsets of 𝑋 are ∅, 𝑋.

12
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Theorem . 𝑓 : 𝑋 → 𝑌  is continuous iff the preimage of every closed set in 𝑌  is closed in 𝑋.

proof. idea: If 𝐴 ⊆ 𝑌  is any subset, then

𝑓−1(𝑌 \ 𝐴) = 𝑋 \ 𝑓−1(𝐴)

so taking complements is “compatible” with taking preimages & exchanges open and closed
sets. □

Theorem (Properties of closed set) . (𝑋, 𝒯) be top. space. 𝑌 ⊆ 𝑋 subspace equipped with the
subspace topology 𝒯|𝑌 ≔ {𝑈 ∩ 𝑌 | 𝑈 open in 𝑋}. 𝐵 ⊆ 𝑌  is closed in 𝒯|𝑌  iff there exists a
closed set 𝐴 ⊆ 𝑋 such that

𝐵 = 𝐴 ∩ 𝑌

proof. Suppose 𝐵 ⊆ 𝑌  is closed in 𝒯|𝑌 ,
⇒ 𝑉 ≔ 𝑌 ∖ 𝐵 is open in 𝒯|𝑌
⇒ 𝑉 = 𝑈 ∩ 𝑌  for an open set 𝑈 ⊆ 𝑋
⇒ 𝐵 = 𝑌 ∖ 𝑉 = 𝑌 ∖ (𝑈 ∧ 𝑌 )

= 𝑌 ∖ 𝑈
= 𝑌 ∩ (𝑋 ∖ 𝑈)
= 𝑌 ∩ 𝐴
= 𝐴 ∩ 𝑌

Conversely the proof is similar. □

Remark .

1. If 𝑌 ⊆ 𝑋 is open in 𝑋 and 𝑉 ⊆ 𝑌  is open in 𝑌 , then 𝑉  is open in 𝑋.

2. If 𝑌 ⊆ 𝑋 is closed in 𝑋 and and 𝐵 ⊆ 𝑌  is closed in 𝒯|𝑌 , then 𝐵 is closed in 𝑋.

Theorem . (𝑋, 𝒯) top. space.
1. ∅, 𝑋 are closed
2. the intersection of any collection of closed sets is closed
3. the union of any finite collection of closed sets is closed

proof.
1. ∅ is closed because 𝑋 − ∅ = 𝑋 is open, and 𝑋 is closed because 𝑋 − 𝑋 = ∅ is open.
2.

Let 𝐴𝑖 ⊆ 𝑋 be closed for 𝑖 ∈ 𝐼 , then 
𝑋
𝐴𝑖 are open, ⋃(𝑋 ∖ 𝐴𝑖) is open, by de Morgan’s law,

𝑋 ∖ ⋂ 𝐴𝑖 is open, so ⋂ 𝐴𝑖 is closed.
3. Similar

□

Caution . Infinite unions of closed sets are in general not closed.
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Example . Take (ℝ, 𝑑), 𝐴𝑖 = [0, 1 − 1
𝑖 ] for 𝑖 = 1, 2, 3, …, then

⋃ 𝐴𝑖 = [0, 1)

which is not closed.

Example . 𝑋 be any set, let ℱ = {𝑈 ⊆ 𝑋 | 𝑋 ∖ 𝑈 is finite} ∪ {∅, 𝑋} defines a topology on 𝑋 called
the cofinite topology or finite-complement topology.

Theorem . In a Hausdorff space, every 1-point set is closed.

proof. Let 𝑋 be Hausdorff, 𝑥 ∈ 𝑋. For each 𝑦 ∈ 𝑋 − {𝑥}, there exists disjoint open neighbor-
hoods 𝑈𝑥 ∋ 𝑥 and 𝑉𝑦 ∋ 𝑦, then

𝑋 − {𝑥} = ⋃
𝑦∈𝑋−{𝑥}

𝑉𝑦

is open, so 𝑋 − {𝑥} is closed, meaning {𝑥} is closed. □

Corollary . In a Hausdorff space, every finite set is closed.

Corollary . if 𝑋 is itself finite, then every subset of 𝑋 is closed, so 𝑋 is discrete.

1.7 Closure and Interior

Definition (Closure) . The closure of 𝐴 ⊆ 𝑋 is the set

𝐴 ≔ ⋂{closed subsets 𝐶 ⊆ 𝑋 | 𝐴 ⊆ 𝐶}

𝐴 is the smallest closed subset of 𝑋 that contains 𝐴 ⊆ 𝑋.

Definition (Interior) . The interior of 𝐴 ⊆ 𝑋 is the set

int 𝐴 ≔ ⋃{open subsets 𝑈 ⊆ 𝑋 | 𝑈 ⊆ 𝐴}

int 𝐴 is the largest open subset of 𝑋 that is contained in 𝐴.

Definition (Boundary) . The boundary of 𝐴 ⊆ 𝑋 is the set

Bd 𝐴 ≔ 𝐴 ∩ 𝑋 ∖ 𝐴

14
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Remark . By de Morgan,

𝑋 ∖ 𝐴 = int(𝑋 ∖ 𝐴)

𝑋 ∖ 𝐴 = 𝑋 ∖ int(𝐴)

so

Bd 𝐴 = 𝐴 ∩ (𝑋 ∖ int(𝐴))

= 𝐴 ∖ int(𝐴)

Remark . By definition, int 𝐴 ⊆ 𝐴 ⊆ 𝐴 so 𝐴 closed iff 𝐴 = 𝐴, and 𝐴 open iff 𝐴 = int(𝐴). 𝐴 is clopen
if 𝐴 = int(𝐴) = 𝐴 and Bd 𝐴 = ∅.

Theorem . 𝑋 top. space, 𝐴 ⊆ 𝑋, 𝑥 ∈ 𝑋.

1. 𝑥 ∈ 𝑋 iff every open neighborhood of 𝑥 intersects 𝐴.
2. 𝑥 ∈ int 𝐴 iff there exists an open neighborhood of 𝑥 that is contained in 𝐴.
3. 𝑥 ∈ Bd 𝐴 iff every open neighborhood of 𝑥 intersects both 𝐴 and 𝑋 ∖ 𝐴.

proof.

1. 𝑥 ∉ 𝐴 ⟺ 𝑥 ∈ 𝑋 ∖ 𝐴 = int(𝑋 ∖ 𝐴)
⟺ ∃ an open neighborhood of 𝑥 that's in 𝑋 ∖ 𝐴.
⟺ ∃ an open neighborhood of 𝑥 that does not intersect 𝐴.

2. Follows from the definition of int 𝐴
3. Follows from 1. and from

Bd 𝐴 = 𝐴 ∩ 𝑋 ∖ 𝐴

□

Example . 𝑋 = ℝ with standard top. 𝐴 = [0, 1], int 𝐴 = (0, 1), Bd 𝐴 = 𝐴 ∩ int 𝐴 = {0, 1}.

Example . 𝑋 = ℝ2 with standard top. 𝐴 = {(𝑥1, 𝑥2) ∈ ℝ2 | 𝑥2
1 + 𝑥2

2 < 1} = 𝐵((0, 0), 1). 𝐴 open
because int 𝐴 = 𝐴.

𝐴 = {(𝑥1, 𝑥2) ∈ ℝ2 | 𝑥2
1 + 𝑥2

2 ≤ 1}

Bd 𝐴 = {(𝑥1, 𝑥2) ∈ ℝ2 | 𝑥2
1 + 𝑥2

2 = 1}

= 𝑆1 = unit circle

Fact . In any metric, 𝐵𝑑(𝑥,𝑟) ⊆ {𝑦 ∈ 𝑋 | 𝑑(𝑥, 𝑦) ≤ 𝑟}.

Theorem . 𝑋, 𝑌  be any top. space, 𝑓 : 𝑋 → 𝑌  is continuous iff

∀𝐴 ⊆ 𝑋. 𝑓(𝐴) ⊆ 𝑓(𝐴)
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A continuous map sends points that are “extremely close” to 𝐴 to points that are extremely
close to 𝑓(𝐴).

Definition (Restriction) . If 𝑓 : 𝑋 → 𝑌  is any map and 𝐴 ⊆ 𝑋, then 𝑓|𝐴 denotes the restriction

𝑓|𝐴 : 𝐴 → 𝑌 = 𝑓 ∘ 𝑖

where

𝑖 : 𝐴 ⟶ 𝑋
𝑥 ⟼ 𝑥

Fact . 𝑖 : 𝐴 → 𝑋 is continuous with respect to the subspace topology

Lemma (Piecing lemma) . Let 𝑓 : 𝑋 → 𝑌  is any map. Suppose 𝑋 = 𝐴 ∪ 𝐵 where 𝐴, 𝐵 ⊆ 𝑋
are closed. If 𝑓|𝐴 and 𝑓|𝐵 are continuous, then 𝑓  is continuous.

proof. Need to show that the preimage of each closed set in 𝑌  is closed in 𝑋. Let 𝐶 ⊆ 𝑌  be
closed. Then

𝑓−1(𝐶) = 𝑓−1(𝐶) ∩ (𝐴 ∪ 𝐵)

= (𝑓−1(𝐶) ∩ 𝐴) ∪ (𝑓−1(𝐶) ∩ 𝐵)

= (𝑓|𝐴)−1(𝐶) ∪ (𝑓|𝐵)−1(𝐶) is closed

□

Theorem . 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 both continuous, then so is 𝑔 ∘ 𝑓 : 𝑋 → 𝑍

proof. Let 𝑊 ⊆ 𝑍 be open sets, then 𝑔−1(𝑊) is open and 𝑓−1(𝑔−1(𝑊)) = (𝑔 ∘ 𝑓)−1(𝑊) is open.
□

Remark . The conclusion of the lemma also holds under the following assumptions:

• 𝑋 = 𝐴1 ∪ … ∪ 𝐴𝑛⏟⏟⏟⏟⏟
Finitely Many

 where all 𝐴𝑖 are closed in 𝑋 and all 𝑓|𝐴𝑖
 are continuous.

• 𝑋 = ⋃ 𝐴𝑖⏟
Arbitrary Union

 where all 𝐴𝑖 are open in 𝑋 and all 𝑓|𝐴𝑖
 are continuous.

In general, it does not hold if 𝑋 = 𝐴 ∪ 𝐵 where 𝐴 is open and 𝐵 is closed.
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1.8 Homeomorphisms

Definition (Homeomorphisms) . A homeomorphism 𝑓 : 𝑋 → 𝑌  is a bijection so that 𝑓  and
𝑓−1 are both continuous.

If such 𝑓  exists, we say that 𝑋 and 𝑌  are homeomorphic and write

𝑋 ≅ 𝑌

Remark .
1. Inverses and compositions of homeomorphisms are homeomorphisms, meaning ≅ is an equiv-

alence relation on the class of top. spaces.
2. A homeomorphism 𝑓 : (𝑋, 𝒯) → (𝑌 , 𝒯′) induces a bijection 𝒯 ⟺ 𝒯′, thus 𝑋 ≅ 𝑌 ⇒ |𝒯| = |𝒯′|
3. A property of top. space 𝑋 is called a homeomorphism invariant or a topological invariant

if it is preserved under ≅. For example, |𝑋|, |𝒯|, Hausdorff, etc.

Example . id : (𝑋, 𝒯) → (𝑋, 𝒯) is a homeomorphism.

Example . If 𝒯 ⊆ 𝒫(𝑋) is strictly finer than 𝒯′ ⊆ 𝒫(𝑋), then

id : (𝑋, 𝒯) → (𝑋, 𝒯′)

is a continuous bijection but not a homeomorphism.

Example . 𝑋 = {𝑎, 𝑏}, 𝑎 ≠ 𝑏, recall that there exists 4 topologies:
• 𝒯1 = {∅, 𝑋}
• 𝒯2 = {∅, {𝑎}, 𝑋}
• 𝒯3 = {∅, {𝑏}, 𝑋}
• 𝒯4 = {∅, {𝑎}, {𝑏}, 𝑋}

Only 𝒯2 and 𝒯3 can be homeomorphic given by

𝑓 : 𝑋 ⟶ 𝑋
𝑎 ⟼ 𝑏
𝑏 ⟼ 𝑎

Example . Take [0, 1] and [0, 2] as subspaces of ℝ with usual topology. They are homeomorphic by
the map

𝑓 : [0, 1] ⟶ [0, 2]
𝑥 ⟼ 2𝑥

𝑓−1 : [0, 1] ⟵ [0, 2]
𝑦
2

⟻ 𝑦

Likewise, 𝑆1 ≅ 2𝑆1 where 𝑆1 is the unit circle.
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Example . (0, 1) ≅ ℝ given by homeomorphism

𝑓(𝑥) ≔ tan(𝜋𝑥 − 𝜋
2
)

𝑓−1(𝑦) ≔ 1
𝜋

(arctan(𝑦) + 𝜋
2
)

Example . 𝑓 : [0, 1) → 𝑆1 given by

𝑓(𝑥) ≔ (cos(2𝜋𝑥), sin(2𝜋𝑥)) = 𝑒2𝜋𝑖𝑥

is a continuous bijection, but 𝑓−1 is not continuous: at (1, 0) ∈ 𝑆1, 𝑓−1 does not satisfy the 𝜀-𝛿
condition. In fact, [0, 1] ≇ 𝑆1.

Theorem (Piecing lemma for homeomorphisms) . 𝑋 = 𝐴 ∪ 𝐵, 𝑌 = 𝐶 ∪ 𝐷, 𝐴, 𝐵 ⊆ 𝑋 closed,
𝐶, 𝐷 ⊆ 𝑌  closed. 𝑓 : 𝑋 → 𝑌  a map 𝑓(𝐴) = 𝐶, 𝑓(𝐵) = 𝐷. Suppose 𝑓  is a bijection and 𝑓|𝐴 :
𝐴 → 𝐶 and 𝑓|𝐵 : 𝐵 → 𝐷 are homeomorphisms, then 𝑓  is a homeomorphism.

Remark (Construction of homeomorphisms) . Let 𝐽 ⊆ [0, 2𝜋] be subset, suppose 𝑔1, 𝑔2 : 𝐽 → [𝑎, 𝑏],
where 0 < 𝑎 < 𝑏 < ∞ are continuous functions. 𝐷1, 𝐷2 are the subsets of ℝ2 given by

𝐷𝑖 = {(𝑟, 𝜃) | 𝜃 ∈ 𝐽 and 0 ≤ 𝑟 ≤ 𝑔𝑖(𝜃)}

in polar coordinates. Claim: 𝐷1 ≅ 𝐷2. Idea is to define a homeomorphism 𝑓 : 𝐷1 → 𝐷2 by sending
each radial segments in 𝐷1 linearly to the corresponding radial segment in 𝐷2. Put Formally:

𝑓(𝑟, 𝜃) ≔ (𝑔2(𝜃)
𝑔1(𝜃)

𝑟, 𝜃)

can check that 𝑓  is a homeomorphism.

Example . 𝑋 = 𝐷2 = {(𝑥1, 𝑥2) ⊆ ℝ2 | 𝑥2
1 + 𝑥2

2 ≤ 1}, 𝑌 = [−1, 1] × [−1, 1], 𝑋 ≅ 𝑌 . or,

𝑋 = {𝑥 ∈ ℝ2 | ‖𝑥‖Eucl ≤ 1}

𝑌 = {𝑥 ∈ ℝ2 | ‖𝑥‖Max ≤ 1}

define 𝑓 : 𝑋 → 𝑌  by

𝑓(𝑥) ≔

{
{
{
{
{0 if 𝑥 = 0

‖𝑥‖Eucl
‖𝑥‖Max

𝑥 otherwise

Same works in ℝ𝑛:

{𝑥 ≤ ℝ𝑛 | ‖𝑥‖Eucl ≤ 1} ≅ [−1, 1]𝑛
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Definition (Isometry) . Let (𝑋, 𝑑), (𝑌 , 𝑑′) be metric spaces. Any isometry 𝑓 : 𝑋 → 𝑌  is a
bijection so that

∀𝑥1, 𝑥2 ∈ 𝑋. 𝑑′(𝑓(𝑥1), 𝑓(𝑥2)) = 𝑑(𝑥1, 𝑥2)

Remark . Isometries are injective and continuous, and every bijective isometry is a homeomor-
phism.

Example (Some isometries of ℝ2) .
• Rotations by an angle 𝜑
• Reflections along lines
• Translations
• Glide reflections

Claim . 𝑓 : ℝ2 → ℝ2 any map, the following are equivalent:
(1) 𝑓  is an isometry fixing 0
(2) ∀𝑥, 𝑦 ∈ ℝ2. ⟨𝑓(𝑥), 𝑓(𝑦)⟩ = ⟨𝑥, 𝑦⟩
(3) 𝑓(𝑥) = 𝐴𝑥 for an orthogonal (𝐴𝑡𝐴 = 𝐼2) matrix 𝐴

And 3 implies that such map is linear

proof.
• (3) ⇒ (1) Let 𝑓(𝑥) = 𝐴𝑥 for 𝐴 orthogonal, then 𝑓  fixes 0 and

𝑑(𝑓(𝑥), 𝑦(𝑥)2 = 𝑑(𝐴𝑥, 𝐴𝑡)2

= ⟨𝐴𝑥 − 𝐴𝑦, 𝐴𝑥 − 𝐴𝑦⟩
= ⟨𝐴(𝑥 − 𝑦), 𝐴(𝑥 − 𝑦)⟩
= (𝑥 − 𝑦)𝑡𝐴𝑡𝐴(𝑥 − 𝑦)
= (𝑥 − 𝑦)𝑡(𝑥 − 𝑦)

= 𝑑(𝑥, 𝑦)2

• (1) ⇒ (2) Let 𝑓  be an isometry fixing 0. Follows because

⟨𝑥, 𝑦⟩ = 1
2
(𝑑(𝑥, 𝑦)2 − 𝑑(𝑥, 0)2 − 𝑑(𝑦, 0)2)

• (2) ⇒ (3) Suppose 𝑓  preserves ⟨ , ⟩. Let 𝐴 = (𝑎1 𝑎2) where 𝑎1 ≔ 𝑓(𝑒1), 𝑎2 ≔ 𝑓(𝑒2), then 𝑎1, 𝑎2
are orthogonal, so 𝐴 is orthogonal. Let ℎ(𝑥) ≔ 𝐴𝑡𝑓(𝑥) = 𝐴−1𝑓(𝑥). Then ℎ preserves ⟨ , ⟩ and
fixes 𝑒1, 𝑒2, so

ℎ(𝑥) = ⟨ℎ(𝑥), 𝑒1⟩𝑒1 + ⟨ℎ(𝑥), 𝑒2⟩𝑒2

= ⟨ℎ(𝑥), ℎ(𝑒1)⟩𝑒1 + ⟨ℎ(𝑥), ℎ(𝑒2)⟩𝑒2

= ⟨𝑥, 𝑒1⟩𝑒1 + ⟨𝑥, 𝑒2⟩𝑒2 = 𝑥
⇒ ℎ(𝑥) = 𝑥

⇒ 𝐴−1𝑓(𝑥) = 𝑥 ⇒ 𝑓(𝑥) = 𝐴𝑥

□
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1.9 Linear and affine maps

Easy to see: Every linear map 𝑓 : ℝ2 → ℝ2 is continuous and every invertible linear map 𝑓 : ℝ2 →
ℝ2 is homeomorphism.

Definition . 𝑓 : ℝ2 → ℝ2 is affine if

∀𝑎1, 𝑎2 ∈ ℝ2, 𝜆1, 𝜆2 ∈ ℝ. 𝑓(𝜆1𝑎1 + 𝜆2𝑎2) = 𝜆1𝑓(𝑎1) + 𝜆2𝑓(𝑎2) with 𝜆1 + 𝜆2 = 1

Exercise.  In this case

𝑓(∑
𝑛

𝑖=1
𝜆𝑖𝑎𝑖) = ∑

𝑛

𝑖=1
𝜆𝑖𝑓(𝑎𝑖)

with ∑𝑛
𝑖=1 𝜆𝑖 = 1.

Claim . 𝑓  affine and fixes 0 iff 𝑓  is linear.

proof.
• “⇐” obvious
• “⇒” Suppose 𝑓  is affine and fixes 0, and let 𝜆1, 𝜆2 ∈ ℝ be arbitrary. Then

𝑓(𝜆1𝑎1 + 𝜆2𝑎2) = 𝑓(𝜆1𝑎1 + 𝜆2𝑎2 + (1 − 𝜆1 − 𝜆2)0)
= 𝜆1𝑓(𝑎1) + 𝜆2𝑓(𝑎2) + (1 − 𝜆1 − 𝜆2)𝑓(0)
= 𝜆1𝑓(𝑎1) + 𝜆2𝑓(𝑎2)
⇒ 𝑓 is linear

□

Remark . Any constant map is affine, and linear combinations of affine maps are affine.

Corollary . Every affine 𝑓 : ℝ2 → ℝ2 has the form

𝑓(𝑥) = 𝐴𝑥 + 𝑏

fir a 2 × 2 matrix 𝐴 and 𝑣 ∈ ℝ2. Invertible affine maps 𝑓 : ℝ2 → ℝ2 are homeomorphisms.

Remark (Special case) . Let 𝜆 ∈ ℝ, 𝜆 ≠ 1, 𝜆 ≠ 0, 𝑓(𝑥) = 𝜆𝑥 + 𝑣 is a deletion or scaling by 𝜆 with
fixed point

1
1 − 𝜆

𝑣
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Definition (Affinely independent) . 𝑎1, 𝑎2, 𝑎3 ∈ ℝ2 are affinely independent if

∀𝜆1, 𝜆2, 𝜆3 ∈ ℝ. 𝜆1𝑎1, 𝜆2𝑎2, 𝜆3𝑎3 = 0 ⟹ 𝜆1 = 𝜆2 = 𝜆3 = 0

Easy to see, 𝑎1, 𝑎2, 𝑎3 affinely independent iff 𝑎2 − 𝑎1, 𝑎3 − 𝑎1 linearly independent. Geome-
try: 𝑎1, 𝑎2, 𝑎3 are not collinear.

Fact . If 𝑎1, 𝑎2, 𝑎3 ∈ ℝ2 are affinely independent and 𝑏1, 𝑏2, 𝑏3 ∈ ℝ2 are arbitrary, then there
exists a unique affine map 𝑓 : ℝ2 → ℝ2 such that

𝑓(𝑎𝑖) = 𝑏𝑖 for 𝑖 = 1, 2, 3

Definition . A homeomorphism composed by multiple maps with piecing lemma is called a
PL homeomorphism, where PL stands for piecewise linear.

Definition (triangulation) . A triangulation for ℝ2 is a collection 𝑇  of triangles 𝑡 ∈ ℝ2 such that
1. the 𝑡 ∈ 𝑇  cover ℝ2

2. if two 𝑡 ≠ 𝑡′ ∈ 𝑇  meet, then 𝑡 ∩ 𝑡′ is either a common edge or a common vertex.
3. Every bounded set 𝐵 ⊆ ℝ2 meets only finitely many 𝑡 ∈ 𝑇 .

Here,
triangle Euclidean triangle, non-degenerate, and the interior is non-empty
bounded fits into a 𝐵(𝑎, 𝑟) ∈ ℝ2 for 𝑟 sufficiently large

Definition . A bijection 𝑓 : ℝ2 → ℝ2 is a PL homeomorphism if there exists triangulations
𝑇 , 𝑇 ′ of ℝ2 such that 𝑓  maps each 𝑡 ∈ 𝑇  affinely (and bijectively) to a 𝑡′ ∈ 𝑇 ′.

Fact . Every PL homeomorphism of ℝ2 is a homeomorphism.

proof. First use the piecing lemma (for finite unions of closed sets) to show that 𝑓  is continuous
on each bounded set 𝐵 ⊆ ℝ2. Then use the piecing lemma (for arbitrary union of open sets) to
conclude that 𝑓  is continuous on all of

ℝ2 = ⋃
𝑟>0

𝐵(𝑎, 𝑟)

Finally, repeat the argument to conclude that 𝑓−1 is also continuous. □
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Remark (Some types of homeo’s of ℝ2 with 𝑑Eucl) .

Type Algebraic Description Examples
Isometries 𝑓(𝑥) = 𝐴𝑥 + 𝑣 ℝ2 ⋊ 𝑂(2) congruent triangles
Isometries & scaling ℝ2 ⋊ (𝑂(2) × ℝ2) similar triangles
Affine bijection ℝ2 ⋊ 𝐺𝐿2(ℝ) any triangles
PL homeomorphisms − simple polygons

Where:
ℝ2 Additive group of ℝ2

ℝ+ Additive group of strictly positive real numbers
𝑂(2) set of orthogonal 2 × 2 matrices
𝐺𝐿2(ℝ) set of real invertible 2 × 2 matrices

1.10 Topological Properties

Properties of a topological space (𝑋, 𝒯) that are preserved under homeomorphisms:
• |𝑋| (number of points)
• |𝒯| (number of open sets)
• Minimal cardinality of a basis or a neighborhood base

2nd countable has a countable base
1st countable every point has a countable neighborhood base

1.10.1. Separation Properties

Definition (Regular) . 𝑋 is regular if it is Hausdorff and for all closed 𝐶 ⊆ 𝑋 and 𝑥 ∈ 𝑋 ∖ 𝐶
there exist disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 such that 𝐶 ⊆ 𝑈  and 𝑥 ∈ 𝑉

Definition (Normal) . 𝑋 is normal if it is Hausdorff and for all disjoint closed 𝐶, 𝐷 ⊆ 𝑋 there
exist disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 such that 𝐶 ⊆ 𝑈  and 𝐷 ⊆ 𝑉

Remark . Normal ⟹ regular ⟹ Hausdorff

Theorem . A Hausdorff space 𝑋 is normal iff there exists 𝑈 ⊇ 𝐶 and every open neighborhood
𝑈 ⊆ 𝐶 there exists an open neighborhood 𝑉 ⊇ 𝐶 such that 𝑉 ⊆ 𝑈

Theorem . A Hausdorff space 𝑋 is normal iff for all decomposition 𝑋 = 𝑈 ∪ 𝑉  into open sets
𝑈, 𝑉 ⊆ 𝑋, there exists open sets 𝑈 ′, 𝑉 ′ ⊆ 𝑋 such that 𝑋 = 𝑈 ′ ∪ 𝑉 ′ and 𝑈 ′ ⊆ 𝑈  and 𝑉 ′ ⊆ 𝑉 .

Theorem . Every metric space 𝑋, 𝑑 is normal
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proof. Already seen: (𝑋, 𝑑) is Hausdorff. To show it’s normal, Let 𝐶1, 𝐶2 ⊆ 𝑋 be disjoint closed
sets. For each 𝑥 ∈ 𝐶, let

𝑟𝑥 ≔ 𝑑(𝑥, 𝐶2) ≔ inf{𝑑(𝑥, 𝑦) | 𝑦 ∈ 𝐶2} > 0

for each 𝑦 ∈ 𝐶2, let

𝑟𝑦 ≔ 𝑑(𝑦, 𝐶1) ≔ inf{𝑑(𝑦, 𝑥) | 𝑥 ∈ 𝐶1} > 0

define:

𝑈 ≔ ⋃
{𝑥∈𝐶1}

𝐵𝑑(𝑥,𝑟𝑥
2 ), 𝑉 ≔ ⋃

{𝑦∈𝐶2}
𝐵𝑑(𝑦,𝑟𝑦

2 )

and one can check 𝑈 ∩ 𝑉 = ∅. Thus 𝑋 is normal. □

1.11 Compactness

Definition (Open Cover) . 𝑋 top. space, 𝐴 ⊆ 𝑋 subset. An open cover of 𝐴 is a collection of
open sets 𝑈1 ⊆ 𝑋 such that

⋃ 𝑈𝑖 ⊇ 𝐴

Definition (Subcover) . A subcover of 𝑈  is a subcollection 𝑉 ⊆ 𝑈  which is still a cover of 𝐴

Definition . 𝐴 ⊆ 𝑋 is compact if every open cover of 𝐴 has a finite subcover.

Special case: 𝐴 = 𝑋. 𝑋 is compact if every open cover of 𝑋 has a finite subcover.

So: compactness can be seen as a property for
• A top. space 𝑋
• A subset 𝐴 ⊆ 𝑋

Easy to see: 𝐴 ⊆ 𝑋 compact ⟺ 𝐴 compact as a top. space equipped with the subspace topology
Usually: regard compactness as a property for top. spaces

Remark . Compactness is preserved under homeomorphisms.

Theorem . Let 𝑓 : 𝑋 → 𝑌  be continuous, if 𝑋 is compact, then so is 𝑓(𝑋) ⊆ 𝑌

proof. Let 𝑉 = {𝑉𝑖} be an open cover of 𝑓(𝑋) ⊆ 𝑌 , 𝑈 ≔ {𝑓−1(𝑉𝑖)} is an open cover of 𝑋 since
𝑓  is continuous. Since 𝑋 is compact, there exists a finite subcover 𝑈𝑖1

, …, 𝑈𝑖𝑘
∈ 𝑈  of 𝑋, then

𝑉𝑖1
, …𝑉𝑖𝑘

 is a finite subcover of 𝑉𝑖. Thus 𝑓(𝑋) is compact. □

Example . ℝ is not compact.
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𝑈 ≔ {(−𝑟, 𝑟) | 𝑟 > 0}

is an open cover with no finite subcover.

Example . 𝑋 metric space, 𝐴 ⊆ 𝑋 an unbounded subset, then 𝐴 is not compact.

proof. Fix 𝑥 ∈ 𝑋,

⋃
𝑟>0

𝐵𝑑(𝑥,𝑟) = 𝑋 ⊇ 𝐴

is an cover of 𝐴 with no finite subcover. □

Remark . In a metric space, compact subsets must be bounded. In fact, they must be totally
bounded, i.e., for every 𝜀 > 0, they can be covered by finitely many 𝜀-balls.

Example . (0, 1) us not compact, since (0, 1) ≅ ℝ

Example . [0, 1] and [0, 1]𝑛 are compact

Example . If a topology space 𝑋 has only finitely many open sets, it is compact.

Theorem . In a Hausdorff space, every compact subset is closed.

proof. Let 𝑋 be Hausdorff and 𝐴 ⊆ 𝑋 be compact.

Need to show: Every 𝑥 ∈ 𝑋 ∖ 𝐴 is an interior point of 𝑋 ∖ 𝐴.

Consider 𝑦 ∈ 𝐴, since 𝑋 is Hausdorff, there exists disjoint open neighborhoods 𝑈𝑦 ∋ 𝑥 and 𝑉𝑦 ∋
𝑦, then {𝑉𝑦 | 𝑦 ∈ 𝐴} is an open cover for 𝐴. Since 𝐴 is compact, there exists a finite subcover
𝑉𝑦1

, …, 𝑉𝑦𝑛
. Now define

𝑈 ≔ 𝑈𝑦1
∩ … ∩ 𝑈𝑦𝑛

then 𝑈  is an open neighborhood of 𝑥 and

𝑈 ∩ 𝐴 ⊆ 𝑈 ∩ (⋃ 𝑉𝑦𝑖
)

= ⋃(𝑈 ∩ 𝑉𝑦𝑖
)

= ∅
⟹ 𝑌 ⊆ 𝑋 ∖ 𝐴

hence 𝑥 is an interior point of 𝑋 ∖ 𝐴. Thus 𝑋 ∖ 𝐴 is open, meaning 𝐴 is closed. □

24



Basic Point Set Topology

Theorem . In a compact space, every closed subset is compact.

proof. Let 𝑋 be compact and 𝐴 ⊆ 𝑋 be closed. Let 𝑈 = {𝑈𝑖} be an open cover of 𝐴. Then
𝑋 ∖ 𝐴 is open, so 𝑈 ∪ {𝑋 ∖ 𝐴} is an open cover of 𝑋. Since 𝑋 is compact, there exists a finite
subcover 𝑈𝑖1

, …, 𝑈𝑖𝑘
, 𝑋 ∖ 𝐴. Then 𝑈𝑖1

, …, 𝑈𝑖𝑘
 is a finite subcover of 𝐴. □

Definition . A map 𝑓 : 𝑋 → 𝑌  is open (resp., closed) if the image of each open (resp., closed)
subset of 𝑋 is open (resp., closed) in 𝑌 .

Example . The map 𝑓 : ℝ2 → ℝ, 𝑓(𝑥1, 𝑥2) ≔ 𝑥1, is open because the image of any ball is opened
interval.

Caution . 𝑓  is not closed. Let

𝐴 ≔ {(𝑥1, 𝑥2) ∈ ℝ | 𝑥1 ≠ 0 and 𝑥2 = 1
𝑥1

}

𝐴 is closed in ℝ2 but 𝑓(𝐴) = ℝ − {0} is not closed in ℝ.

Remark . If 𝑓 : 𝑋 → 𝑌  is a bijection, 𝑓  closed iff 𝑓  open iff 𝑓−1 continuous.

Theorem (Compact-to-Hausdorff Theorem) . Let 𝑓 : 𝑋 → 𝑌  be a continuous map from a
compact space 𝑋 to a Hausdorff space 𝑌 . Then 𝑓(𝑋) is compact.

proof. Let 𝐶 ⊆ 𝑋 be closed, then 𝐶 is compact, 𝑓(𝐶) is compact, and 𝑓(𝐶) is closed. Thus
𝑓(𝑋) is compact. □

Corollary . Let 𝑓 : 𝑋 → 𝑌  be a continuous bijection from a compact space 𝑋 to a Hausdorff
space 𝑌 . Then 𝑓  is a homeomorphism.

proof. 𝑓  is a closed map, so 𝑓−1 is continuous. □

Caution . The assumption on 𝑋 and 𝑌  are essential!

Example . 𝑓 : [0, 1) → 𝑆1 given by 𝑓(𝑠) = (cos(2𝜋𝑠), sin(2𝜋𝑠)) is a continuous bijection but not a
homeomorphism.

Example . 𝑋 = {𝑎, 𝑏}, 𝑎 ≠ 𝑏. Equip 𝑋 with the discrete topology, and 𝑌 = {𝑎, 𝑏}, but with trivial
topology.

id : 𝑋 ⟶ 𝑌

is a continuous bijection, but not a homeomorphism.
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1.12 Compactness in ℝ

Fact . Every non-empty bounded above subset 𝐴 ⊆ ℝ has a least upper bound in ℝ

Theorem . [𝑎, 𝑏] ∈ ℝ is compact

Corollary . 𝐴 ⊆ ℝ compact iff 𝐴 closed and bounded.

1.13 Product Topology and compactness in ℝ𝑛

Let 𝑋, 𝑌  be topological spaces.

ℬ ≔ {𝑈 × 𝑉 | 𝑈 ⊆ 𝑋 open in 𝑈, 𝑉 ⊆ 𝑌 open in 𝑌 }

Easy to see: this is a basis for a topology on 𝑋 × 𝑌  denoted 𝒯product.

Definition (Product neighborhood) . A 𝑈 × 𝑉  that contains (𝑥, 𝑦) ∈ 𝑋 × 𝑌  is called a product
neighborhood of (𝑥, 𝑦).

Definition (Two possible extensions to infinite product) . 𝑋𝑖, 𝑖 ∈ 𝐼 , family of top, space, let 𝑋
be the set ∏𝑖∈𝐼 𝑋

1.

ℬproduct ≔ {∏
𝑖∈𝐼

𝑈𝑖 | 𝑈𝑖 open in 𝑋𝑖, 𝑈𝑖 = 𝑋𝑖 for all but finitely many 𝑖}

Product Topology on 𝑋 = ∏ 𝑋𝑖

2.

ℬbox ≔ {∏
𝑖∈𝐼

𝑈𝑖 | 𝑈𝑖 open in 𝑋𝑖}

Box Topology on 𝑋 = ∏ 𝑋𝑖

For finer topologies, 𝒯box are usually finer than 𝒯product

Proposition . Let 𝑋 × 𝑌  be equipped with 𝒯product, then the inclusion 𝑖𝑋 : 𝑌 → 𝑋 × 𝑌 , 𝑖𝑌 :
𝑋 → 𝑌 , the projections 𝑝𝑋 : 𝑋 × 𝑌 → 𝑋, 𝑝𝑌 : 𝑋 × 𝑌 → 𝑌  are continuous and open.
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Remark . 𝒯product is the smallest (coarsest) topology on 𝑋 × 𝑌  that makes the projections contin-
uous.

Corollary . For fixed 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , {𝑥} × 𝑌  and 𝑋 × {𝑦} are homeomorphic to 𝑌  and 𝑋,
respectively.

Theorem (Tychonoff's Theorem) . Let 𝑋𝑖, 𝑖 ∈ 𝐼  be a family of compact top. spaces. Then the
product ∏𝑖∈𝐼 𝑋𝑖 is compact.

proof. We will need tube lemma.

Lemma (Tube lemma) . Let 𝑌  be compact and 𝑊 ⊆ 𝑋 × 𝑌  be an open neighborhood of
{𝑥} × 𝑌  for an 𝑥 ∈ 𝑋, then there exists an open neighborhood 𝑈 ⊆ 𝑋 of 𝑥 such that 𝑈 ×
𝑌 ⊆ 𝑊 . 𝑈 × 𝑌  is sometimes called a “tube”.

□

Claim . The standard topology on ℝ𝑛, 0 ≤ 𝑛 < ∞ agrees with the product topology on

ℝ𝑛 = ℝ × ℝ × … × ℝ

Theorem (Heine-Borel) . 𝐴 ⊆ ℝ𝑛 compact iff 𝐴 is closed and bounded.

Fact (Generalized Heine-Borel) . (𝑋, 𝑑) be metric space. 𝑋 compact iff 𝑋 complete (every
Cauchy sequence has a convergent subsequence) and totally bounded.

Remark . “Compact” is a topological property. “Complete” and “totally bounded” are metric prop-
erties that are preserved under bijective isometries.

Definition (Sequences) . Let 𝑋 be topological space. A sequence in 𝑋 is a function

𝑠 : ℕ → 𝑋

usually write: 𝑠𝑛 ≔ 𝑠(𝑛) and {𝑠𝑛 | 𝑛 ∈ ℕ} or {𝑠1, 𝑠2, …} for the sequences.

Definition (Subsequence) . A subsequence of a sequence 𝑠 in 𝑋 is a composition 𝑠′ = 𝑠 ∘ 𝑗 for
a strictly increasing function 𝑗 : ℕ → ℕ.

In other hands: A subsequence is of the form

{𝑠𝑗1
, 𝑠𝑗2

, 𝑠𝑗3
, …}

for 𝑗1 < 𝑗2 < 𝑗3 < …
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Definition (Convergence) . 𝑠 be a sequence in 𝑋, 𝑥 be any point in 𝑋. We say that 𝑠 converges
to 𝑥 if for every open neighborhood 𝑈  of 𝑥, there exists 𝑁 ∈ ℕ such that 𝑠𝑛 ∈ 𝑈  for all 𝑛 ≥ 𝑁 .

Equivalently, every open neighborhood of 𝑥 contains 𝑠𝑛 for all but finitely many 𝑛.

Remark . In Hausdorff space, a sequence 𝑠 can converge to at most one point. In this case, we say
that 𝑥 is the limit of 𝑠 and write

𝑥 = lim
𝑛→∞

𝑠𝑛

Definition (Sequentially Compactness) . A topological space 𝑋 is sequentially compact if
every sequence in 𝑋 has a convergent subsequence.

Question . How is this related to compactness?

Preliminary observation: If 𝑠𝑛 → 𝑥, then every open neighborhood 𝑈  of 𝑥 contains 𝑠𝑛 for infinitely
many 𝑛.

Proposition . Let 𝑥 ∈ 𝑋, if 𝑋 is 1st countable and if every open neighborhood of 𝑥 contains
𝑠𝑛 for infinitely many 𝑛, then 𝑠𝑛 has a convergent subsequence converging to 𝑥.

proof. Since 𝑋 is 1st countable, there exists a countable neighborhood basis

𝒩𝑥 = {𝑁1, 𝑁2, 𝑁3, …}

at 𝑥. Define

𝑀𝑖 ≔ 𝑁1 ∩ … ∩ 𝑁𝑖

then {𝑀1, 𝑀2, …} is a new neighborhood basis at 𝑥 and

𝑀1 ⊇ 𝑀2 ⊇ 𝑀3 ⊇ …

In particular, every open neighborhood 𝑈  of 𝑥 contains all 𝑀𝑖 with 𝑖 ≫ 0. Then we can choose
𝑗1 < 𝑗2 < 𝑗3 < … such that

𝑠𝑗𝑖
∈ 𝑀𝑖

then {𝑠𝑗1
, 𝑠𝑗2

, 𝑠𝑗3
, …} is a subsequence of 𝑠 that converges to 𝑥. □

Theorem . If 𝑋 is 1st countable, then 𝑋 compact ⇒ 𝑋 sequentially compact.

proof. Suppose 𝑋 is compact, and suppose 𝑆𝑛 is a sequence in 𝑋 that has no convergent
subsequence, then ∀𝑥 ∈ 𝑋. {𝑠𝑛} has no subsequence converging to 𝑥. Since 𝑋 is comact, there
exists finitely many 𝑥1, …, 𝑥𝑚 ∈ 𝑋 such that 𝑈𝑥1

∪ … ∪ 𝑈𝑥𝑚
= 𝑋, then 𝑋 contains 𝑠𝑛 for only

finitely many 𝑛, contradiction because {𝑠𝑛} was a sequence in 𝑋. □
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1.14 Lebesgue number lemma

Definition (Lebesgue number) . Let (𝑋, 𝑑) be metric space, 𝒰 = {𝑈𝑖} be an open cover for 𝑋.
A real number 𝒮 > 0 is called a Lebesgue number for 𝒰 if every 𝐴 ⊆ 𝑋 with ⌀(𝐴) < 𝒮 is
contained in some 𝑈𝑖 ∈ 𝒰.

Theorem (The Lemma) . If a metric space 𝑋 is sequentially compact then every open cover of
𝑋 has a Lebesgue number.

proof. Let 𝑋 be sequentially compact and 𝒰 = {𝑈𝑖} be an open cover. Suppose there is no
Lebesgue number for 𝒰, there there are arbitrarily small 𝐴 ⊆ 𝑋 which are not in 𝑈𝑖. Then there
exists a sequence 𝐴1, 𝐴2, … ⊆ 𝑋 such that

⌀(𝐴𝑛) < 1
𝑛

but since that 𝐴𝑛 is not contained in any 𝑈𝑖, choose 𝑎𝑛 ∈ 𝐴𝑛 in each 𝐴𝑛, get a sequence 𝑎1, 𝑎2, …
in 𝑋 that has no convergent subsequence, contradiction. □

Theorem . If 𝑋 is a metric space, then 𝑋 sequentially compact ⇒ 𝑋 compact.

1.15 Connectness

Definition (Separation) . A separation for top. space 𝑋 is a pair of disjoint non-empty open
subsets 𝑈, 𝑉 ⊆ 𝑋 such that 𝑋 = 𝑈 ∪ 𝑉

Definition . 𝑋 is separated or disconnected if there exists a separation for 𝑋. Otherwise 𝑋
is connected.

Note . If 𝑋 = 𝑈 ∪ 𝑉  is a separation, then 𝑈  and 𝑉  are clopen in 𝑋.

Remark . 𝑋 connected
⟺ 𝑋 is not a disjoint union of two non-empty closed subsets
⟺ the only clopen subsets of 𝑋 are ∅ and 𝑋

Definition . A subset 𝐴 ⊆ 𝑋 is separated (resp., connected) if 𝐴 is separated (resp.,
connected) in the subspace topology.

Note . Connectness is a topological property.
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Theorem . Let 𝑓 : 𝑋 → 𝑌  be continuous. If 𝑋 is connected, then so is 𝑓(𝑋).

1.16 Connectness in ℝ

Definition . 𝐴 ⊆ ℝ is convex if

𝑥, 𝑦 ∈ 𝐴 ⇒ [𝑥, 𝑦] ⊆ 𝐴

Remark . Convexity also makes sense in ℝ𝑛.

Lemma . 𝐴 ⊆ ℝ connected ⇒ 𝐴 ⊆ ℝ convex, but not true in general.

proof. Suppose 𝐴 ⊆ ℝ is connected but not convex, then

∃𝑥, 𝑦 ∈ 𝐴. [𝑥, 𝑦] ∉ 𝐴
⇒ ∃𝑧 ∈ [𝑥, 𝑦]. 𝑧 ∉ 𝐴

⇒ (−∞, 𝑧) ∩ 𝐴 and (𝑧, ∞) ∩ 𝐴 is a separation for 𝐴
⇒ 𝐴 is disconnected

⊥

□

Lemma . 𝐴 ⊆ ℝ connected ⇒ 𝐴 ⊆ ℝ is an interval, a ray, or ℝ.

proof. Assume for simplicity that 𝐴 is bounded. Let 𝑎 ≔ inf 𝐴 and 𝑏 ≔ sup 𝐴, then [𝑎, 𝑏] ⊆ 𝐴.

Exercise: Since 𝐴 is convex, 𝐴 ⊇ (𝑎, 𝑏)

4 possibilities: 𝐴 = [𝑎, 𝑏], 𝐴 = [𝑎, 𝑏), 𝐴 = (𝑎, 𝑏], 𝐴 = (𝑎, 𝑏), then 𝐴 is an interval □

Lemma . 𝐴 ⊆ ℝ an interval, a ray, or ℝ ⇒ 𝐴 ⊆ ℝ connected.

proof. Wil only consider the case

𝐴 = [𝑎, 𝑏] for 𝑎 < 𝑏

Suppose 𝑈, 𝑉 ⊆ ℝ are open subsets such that 𝑈 ∩ 𝐴 and 𝑉 ∩ 𝐴 are disjoint and 𝑈 ∪ 𝑉 ⊇ 𝐴.

Need to show: 𝑈 ⊇ 𝐴 or 𝑉 ⊇ 𝐴.

Assume WLOG that 𝑎 ∈ 𝑈 , define

𝐵 ≔ {𝑥 ∈ [𝑎, 𝑏] | [𝑎, 𝑥] ⊆ 𝑈}

Notice that 𝑎 ∈ 𝐵 since 𝑎 ∈ 𝑈 , then 𝐵 ≠ ∅ and 𝐵 is bounded since ⊆ [𝑎, 𝑏]. Let

30



Basic Point Set Topology

𝑢 ≔ sup 𝐵 ≥ 𝑎

Now prove as an exercise: 𝑢 ∈ 𝑈 , 𝑢 ∈ 𝐵, 𝑢 = 𝑏, then 𝑏 ∈ 𝐵, hence 𝐵 = [𝑎, 𝑏] ⊆ 𝑈 , thus 𝐴 ⊆ 𝑈 .
□

Summary . The following are equivalent:

(a) 𝐴 connected
(b) 𝐴 convex
(c) 𝐴 an interval, a ray, or ℝ

Theorem (IVT) . Let 𝑓 : 𝑋 → ℝ be continuous. If 𝑋 is connected and 𝑓  assumes two values
𝑥, 𝑦 ∈ ℝ, then it also assumes every value 𝑧 ∈ [𝑥, 𝑦].

proof. The assumptions imply that 𝑓(𝑋) ⊆ ℝ is connected, then 𝑓(𝑋) convex. □

Corollary (EVT) . Let 𝑋 ≠ ∅ be connected and compact, then

𝑓(𝑋) = [𝑚, 𝑀]

where 𝑚 is the absolute minimum of 𝑓  and 𝑀  is the absolute maximum of 𝑓 .

1.16.1. Application

Theorem . Let 𝑓 : 𝑆1 → ℝ be continuous. Then

∃𝑥 ∈ 𝑆1. 𝑓(𝑥) = 𝑓(−𝑥)

proof. Define 𝑔 : 𝑆1 → ℝ by

𝑔(𝑥) ≔ 𝑓(𝑥) − 𝑓(−𝑥) ∈ ℝ

then 𝑔 is continuous and 𝑔(−𝑥) = −𝑔(𝑥). Now fix 𝑥 ∈ 𝑆1. Let 𝛼 ∈ 𝑆1 be one of the arcs from
𝑥 to −𝑥. Let 𝑘 ≔ 𝑔|𝛼 : 𝛼 → ℝ. Can assume WLOG 𝑘(𝑥) ≥ 0, then 𝑘(−𝑥) ≤ 0, hence there exists
𝑦 ∈ 𝛼 such that 𝑘(𝑦) = 0, then 𝑔(𝑦) = 0, and 𝑓(𝑦) = 𝑓(−𝑦). □

Remark . Turns out: If 𝑛 ≥ 1 and 𝑓 : 𝑆𝑛 → ℝ𝑛 is continuous, then

∃𝑥 ∈ 𝑆𝑛. 𝑓(−𝑥) = 𝑓(𝑥)

1.17 Path Connectness

Definition (Path) . 𝑋 top. space, 𝑥, 𝑦 ∈ 𝑋, a path from 𝑥 to 𝑦 is a continuous map 𝑓 : [0, 1] →
𝑋 such that

𝑓(0) = 𝑥 and 𝑓(1) = 𝑦
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In this case, say 𝑓  connects 𝑥 to 𝑦.

Definition (Path Connectness) . 𝑋 is path connected if

∀𝑥, 𝑦 ∈ 𝑋. ∃ a path 𝑓 from 𝑥 to 𝑦

Remark . if 𝑓  is a path from 𝑥 to 𝑦, then

𝑓 ≔ 𝑓(1 − 𝑡), 𝑡 ∈ [0, 1]

is a path from 𝑦 to 𝑥.

Remark . Can also compose paths in 𝑋:

𝑓  is a path from 𝑥 to 𝑦, 𝑔 is a path from 𝑦 to 𝑧, define

(𝑓 ∗ 𝑔)(𝑡) ≔ {
𝑓(2𝑡) 0 ≤ 𝑡 ≤ 1

2
𝑔(2𝑡 − 1) 1

2 ≤ 𝑡 ≤ 1

is a path from 𝑥 to 𝑧

Definition (Path Component) . Define a relation ∼ on 𝑋 by

𝑥 ∼ 𝑦 ≔ ∃ a path 𝑓 from 𝑥 to 𝑦

∼ is an equivalence relation, and the equivalence classes are called path components, turns
out, the maximal path connected subset of 𝑋.

Definition . Define a in general different relation ∼ on 𝑋 by

𝑥 ∼ 𝑦 :⟺ ∃ a connected 𝐴 ⊆ 𝑋. 𝐴. ∋ 𝑥, 𝑦

∼ is an equivalence relation, and the equivalence classes are called connected components
or just components, turns out, the maximal connected subset of 𝑋.

Theorem . 𝑋 path connected ⇒ 𝑋 connected

proof. Suppose 𝑋 is path connected but not connected, then there exists a separation 𝑈, 𝑉 ⊆ 𝑋.
Let 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , there exists a path 𝑓  from 𝑥 to 𝑦 and [0, 1] = 𝑓−1(𝑈) ∪ 𝑓−1(𝑉 ) is a separation
for [0, 1], contradiction. □

Remark (Consequence) . Each path component of 𝑋 is connected
⇒ each path component is in a connected component
⇒ each connected compoenet is a disjoint union of path components

Example . Let 𝑋 = 𝐴 ∪ 𝐵 ⊆ ℝ2,
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𝐴 ≔ {(𝑥, sin(1
𝑥

)) | 𝑥 ∈ (0, 1]}

𝐵 ≔ {(0, 𝑦) | 𝑦 ∈ [−1, 1]} = {0} × [−1, 1]

Equip 𝑋 ⊆ ℝ2 with the subpace topology from ℝ2. Then 𝑋 is connected but not path connected.
This is called the topologist’s sine curve.

Fact . Connected components are closed, but path components are not necessarily closed.

Proposition . Every convex subset 𝐴 ⊆ ℝ𝑛 is path connected

proof. Obvious: if 𝑥, 𝑦 ∈ 𝐴, then

𝑔(𝑡) ≔ (1 − 𝑡)𝑥 + 𝑡𝑦, 𝑡 ∈ [0, 1]

is a path in 𝐴 from 𝑥 to 𝑦. □

Definition . 𝑋 is locally path connected if for every 𝑥 ∈ 𝑋 and every open neighborhood 𝑈  of
𝑥, there exists an open neighborhood 𝑉 ⊆ 𝑈  of 𝑥 that is a neighborhood basis of 𝑥 consisting
of path connected sets.

Remark . This is equivalent to saying that 𝑋 has a basis consisting of path connected sets.

Example . ℝ𝑛 is locally path connected

Proposition . Suppose 𝑋 is locally path connected, and 𝑈 ⊆ 𝑋 is open in 𝑋, then

𝑈 connected ⟹ 𝑈 path connected

while ⟸ always holds.

Definition (Quotient Spaces) . 𝑞 : 𝑋 → 𝑌  be surjective maps, then

𝑈 ⊆ 𝑌 open ⟺ 𝑞−1(𝑈) ⊆ 𝑋 open

In this case:
• 𝑌  is called the quotient space of 𝑋 by 𝑔
• Say 𝑌  has the quotient topology w.r.t. (X, Q)

where 𝒯quotient = {𝑈 ⊆ 𝑌 | 𝑞−1(𝑈) ⊆ 𝑋 open}
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Corollary . Suppose

↑𝑓

↑

𝑞

↑

𝑞′

↑𝑔

𝑋 𝑋′

𝑌 𝑌 ′

is a commutative diagram of continuous maps, where 𝑞 is a quotient map. If 𝑓  is continuous,
then so is 𝑔.

1.18 Construction of quotient spaces

Definition . 𝑋 space, ∼ equivalence relaton on 𝑋, consider the map

𝑞 : 𝑋 → 𝑋
∼

, all ∼ equivalence classes [𝑥]

can equip 𝑋
∼  with the quotient topology,

𝑈 ⊆ 𝑋
∼

open ⟺ 𝑞−1(𝑈) ⊆ 𝑋 open

(𝑋
∼ , 𝜏quotient) is called an identification space.

Example (Special Case) . 𝐴 ⊆ 𝑋 subset, define

𝑥 ∼ 𝑦 :⟺ 𝑥 = 𝑦 or 𝑥, 𝑦 ∈ 𝐴

Definition .

𝑋
𝐴

≔ 𝑋
∼

“collapsed” 𝐴 to a single point.
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Proposition . Let 𝑓 : 𝑋 → 𝑌  be a continuous surjection from a compact space 𝑋 to a Hausdorff
space 𝑌 . Define

∀𝑥, 𝑥′ ∈ 𝑋. 𝑥 ∼ 𝑥′ ⟺ 𝑓(𝑥) = 𝑓(𝑥′)

Then the induced map 𝑓 : 𝑋
∼ → 𝑌  is a homeomorphism.

↑𝑓

↑

quotient map: 𝑞

↑

𝑓

𝑋 𝑌

𝑋
∼

proof. It is clear that 𝑓  is a continuous bijection. Moreover, 𝑋∼  is compact since 𝑋∼ = 𝑔(𝑋). Then
𝑓  is a continuous bijection from a compact space to a Hausdorff space, thus a homeomorphism.

□

Example . 𝑋 = [0, 1], 𝐴 = {0, 1}

Claim: [0,1]
{0,1} = [0,1]

0∼1 ≅ 𝑆1

proof. Define 𝑓 : [0, 1] → 𝑆1 by

𝑓(𝑡) ≔ 𝑒2𝜋𝑖𝑡

then 𝑓  is continuous and surjective. Because [0, 1] is compact, 𝑆1 Hausdorff, then 𝑓(𝑡) =
𝑓(𝑡′) ⟺ 𝑡 = 𝑡′ or 𝑡, 𝑡′ ∈ [0, 1]. Therefore 𝑓 : [0,1]

{0,1} → 𝑆1 is a homeomorphism. □

Example .

𝑋 = 𝐷𝑛 = {(𝑥1, …, 𝑥𝑛) ∈ ℝ2 | 𝑥2
1 + … + 𝑥2

𝑛 ≤ 1} ⊆ ℝ𝑛

𝐴 = 𝜕𝐷𝑛 = 𝑆𝑛−1 = {… | 𝑥2
1 + … + 𝑥2

𝑛 = 1}

Claim: 𝐷𝑛

𝜕𝐷𝑛 ≅ 𝑆𝑛

proof. Define 𝑓 : 𝐷𝑛 → 𝑆𝑛 by

𝑓(𝑥) ≔

(
((
((
(

sin(𝜋‖𝑥‖) 𝑥
‖𝑥‖⏟⏟⏟⏟⏟

∈ℝ𝑛

, − cos(𝜋‖𝑥‖)⏟⏟⏟⏟⏟
∈ℝ

)
))
))
)

∈ ℝ𝑛 × ℝ

for 𝑥 = 0 and 𝑓(0) ≔ (0, …, 0, −1)

𝑓  continuous injection. 𝐷𝑛 compact, 𝑆𝑛 Hausdorff, 𝑓(𝑥) = 𝑓(𝑥′) iff 𝑥 = 𝑥′ or 𝑥, 𝑥′ ∈ 𝜕𝐷𝑛, then
𝑓 : 𝐷𝑛

𝜕𝐷𝑛 → 𝑆𝑛 is a homeomorphism. □
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1.19 Disjoint Union and gluing

Definition (Disjoint Union Topology) . 𝐴, 𝐵 disjoint topological spaces, if not, could make them
disjoint by replacing them by 𝐴 × [0] and 𝐵 × {1} ∈ (𝐴 ∪ 𝐵) × {0, 1} as a set. Define

𝒯 ≔ {𝑈 ∪ 𝑉 | 𝑈 open in 𝐴, 𝑉 open in 𝐵}

then 𝒯 is a topology on 𝐴 ∪ 𝐵 called the disjoint union topology. Use the notion

𝐴 ⊔ 𝐵 ≔ (𝐴 ∪ 𝐵, 𝒯)

Note . 𝐴, 𝐵 are clopen in 𝐴 ⊔ 𝐵, then if 𝐴, 𝐵 ≠ ∅, then 𝐴 ⊔ 𝐵 is disconnected.

Definition . Suppose 𝐾 ⊆ 𝐵 is a subset, 𝑓 : 𝐾 → 𝐴 a continuous map (or homeomorphism)²,
assume 𝐾 is closed in 𝐵 (and 𝐾 closed in 𝐴), then define

𝐴 ⊔𝑓 𝐵 ≔ 𝐴 ⊔ 𝐵
𝑓(𝑥) ∼ 𝑥, ∀𝑥 ∈ 𝐾

Why do wee want 𝐾 to be closed and 𝑓  to be continuous?

Claim . The subspace topology on 𝐴 ⊆ 𝐴 ⊔𝑓 𝐵 agree with the original topology on 𝐴.

proof. Clear that the quotient map

𝑞 : 𝐴 ⊔ 𝐵 → 𝐴 ⊔𝑓 𝐵

restrict to a continuousjection from

𝐴 ⟶
id

𝐴

from 𝐴 with original topology to 𝐴 as a subspace of 𝐴 ⊔𝑓 𝐵. For every closed set 𝐶 ⊆ 𝐴 in
subspace topology is also closed in the original topology.

𝑞−1(𝐶) = 𝐶 ∪ 𝑓−1(𝐶)

where 𝑓−1(𝐶) is closed in 𝐾 since 𝑓  continuous, hence closed in 𝐵. Then 𝑞−1(𝐶) is closed in
𝐴 ⊔ 𝐵, then 𝐶 is closed in 𝐴 ⊔𝑓 𝐵 by defintion of 𝒯quotient. □

Proposition . Let

𝑔 : 𝐴 ⊔𝑓 𝐵 ⟶ 𝐶

be induced by continuous maps

𝑔𝐴 : 𝐴 ⟶ 𝐶 and 𝑔𝐵 : 𝐵 ⟶ 𝐶

²Text in grey parenthesis are extra assumptions in textbook
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such that 𝑔𝐴 ∘ 𝑓 = 𝑔𝐵|𝐾  then 𝑔 is continuous.

proof. Have

↑𝑔𝐴 ⊔ 𝑔𝐵

↑

𝑞

↑

𝑔

𝐴 ⊔ 𝐵 𝐶

𝐴 ⊔𝑓 𝐵

𝑔 continuous by the universal property of quotient topology.. □

Lemma (Urysohn's) . Let 𝐴, 𝐵 be disjoint closed subsets in a normal space 𝑋, then there exists
a continuous 𝑓 : 𝑋 → [0, 1] s.t.

𝑓(𝐴) ⊆ {0} and 𝑓(𝐵) ⊆ {1}

proof. Slightly lengthy (non-obvious) in general. For metric space, can take:

𝑓(𝑥) ≔ 𝑑(𝑥, 𝐴)
𝑑(𝑥, 𝐴) + 𝑑(𝑥, 𝐵)

where 𝑑(𝑥, 𝐴) ≔ inf{𝑑(𝑥, 𝑦) | 𝑦 ∈ 𝐴} □

Remark . Could replace [0, 1] by any [𝑎, 𝑏]

Remark . If 𝑓 : 𝑋 → [0, 1] is a Urysohn function for 𝐴 and 𝐵, then

𝑈 ≔ 𝑓−1([0, 1
2
)), 𝑉 ≔ 𝑓−1((1

2
, 1])

are disjoint open neighborhoods for 𝐴 and 𝐵.

Theorem (Tietze Extension Theorem) . Let 𝑋 normal, 𝐴 ⊆ 𝑋 closed, 𝑓 : 𝐴 ⟶ [𝑎, 𝑏] contin-
uous, 𝑎 ≤ 𝑏. Then there exists a continuous 𝐹 : 𝑋 → [𝑎, 𝑏] such that 𝐹|𝐴 = 𝑓 .

Lemma . The Tietze Extension Theorem also holds for continuous function

𝑓 : 𝐴 ⟶ ℝ

for 𝐴 ⊆ 𝑋 closed and 𝑋 normal.
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1.20 Simply connected space

Recall . 𝑋 path connected if ∀𝑥, 𝑦 ∈ 𝑋. there exists a path from 𝑥 to 𝑦. Equivalently, every (cont.)
map 𝑔 : 𝑆0 → 𝑋 extends to a continuous map 𝐺 : 𝐷1 → 𝑋, where 𝐷1 = [−1, 1], 𝑆0 = 𝜕𝐷1 =
{−1, 1}.

Definition . 𝑋 simply connected if it is path connected and every continuous map 𝑔 : 𝑆1 → 𝑋
extends to a continuous map 𝐷2 → 𝑋.

Fact .
1. Convex subsets 𝐴 ⊆ ℝ𝑛 are simply connected
2. 𝑆1 or ℝ2 − {(0, 0)} or ℝ3 − {z axis} are not simply connected
3. If 𝑋 = 𝑈 ∪ 𝑉  where

• 𝑈, 𝑉 ⊆ 𝑋 are open
• 𝑈, 𝑉  are simply connected
• 𝑈 ∩ 𝑉  is path connected

then 𝑋 is simply connected

Example . 𝑋 = 𝑆2 or 𝑆𝑛 for 𝑛 > −2, 𝑁 = (0, 0, 1), north pole, 𝑆 = (0, 0, −1), south pole. Define

𝑈 ≔ 𝑆2 − {𝑁} ≅ ℝ2

𝑉 ≔ 𝑆2 − {𝑆} ≅ ℝ2

then 𝑈, 𝑉  are open and simply connected, 𝑈 ∪ 𝑉 = 𝑆2. Moreover, 𝑈 ∩ 𝑉 = 𝑆2 − {𝑁, 𝑆} is path
connected, then 𝑆2 is simply connected.

1.21 Jordan Curve Theorem and Schoenflies Theorem

Definition . A simply closed curve in ℝ2 is a continuous injection 𝑓 : 𝑆1 → ℝ2.

Remark . The image 𝐶 = 𝑓(𝑆1) is sometimes also called a “simple closed curve”

Theorem (Jordan Curve Theorem) . If 𝐶 = 𝑓(𝑆1) is a simple closed curve in ℝ2, then ℝ2 ∖ 𝐶
has exactly two connected components. Moreover:
• one these components is bounded and the other one is unbounded
• 𝐶 is the boundary of each of these components

There exists various proofs, e.g. via (co)homology (Lefschetz duality). Direct proof:
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proof. Can compactify ℝ2 to get ℝ2 ∪ {∞} ≅ 𝑆2. Map 𝐶 onto 𝑆2 without touching ∞. Now
remove 𝑝 ∈ 𝐶 ⊆ 𝑆2. to get an “infinite arc” 𝐶′ ⊆ ℝ2. This reduces the original problem to
showing:

Lemma . If 𝑓 : ℝ → ℝ2 is a closed embedding and 𝐶′ = 𝑓(ℝ), then ℝ2 ∖ 𝐶′ is not path
connected.

proof. Let 𝐶′ = 𝑓(ℝ), 𝑓 : ℝ → ℝ2 be a closed embedding. Let 𝑔 : 𝐶′ ⟶
≅

ℝ be the homeo-
morphism which is inverse of 𝑓 . By Tietze Extension Theorem, 𝑔 extends to a continuous
𝐺 : ℝ2 → ℝ. Think ℝ3 as the product of xy-plane and z-axis. Define 𝐹 : ℝ3 → ℝ3 as the
composition

(𝑝, 𝑧) ⟼ (𝑝, 𝑧 + 𝐺(𝑝)) ⟼ (𝑝 − 𝑓(𝑧 + 𝐺(𝑝)), 𝑧 + 𝐺(𝑝))
(𝑝, 𝑧′) ⟼ (𝑝 − 𝑓(𝑧′), 𝑧′)

it’s easy to see that 𝐹  is a homeomorphism and maps 𝐶′ ⊆ ℝ2 ⊆ ℝ3 bijectively to the z-
axis. Then

ℝ3 ∖ 𝐶′ ≅
𝐹

ℝ3 ∖ {z axis}

then ℝ3 ∖ 𝐶′ is not simply connected. On the other hand, can write ℝ3 ∖ 𝐶′ as ℝ3 ∖ 𝐶′ =
𝑈 ∪ 𝑉  where

𝑈 ≔ (ℝ2 × (0, ∞)) ∪ ((ℝ2 ∖ 𝐶′) × (−1, 1))

𝑈 ≔ (ℝ2 × (−∞, 0)) ∪ ((ℝ2 ∖ 𝐶′) × (−1, 1))

can check that 𝑈  and 𝑉  are open and simply connected. Note that 𝑈 ∩ 𝑉 = (ℝ2 ∖ 𝐶′) ×
(−1, 1). If ℝ2 ∖ 𝐶′ were path connected, then 𝑈 ∩ 𝑉  would be path connected, contradiction,
hence ℝ2 ∖ 𝐶′ is not path connected. □

Note (Why is this proof nice?) .
• To prove that ℝ2 ∖ 𝐶′ is not path connected, would like to straiten 𝐶′

• This is hard to do in ℝ2, but easier in ℝ3

• Turns out: 𝐶′ can be straightened in ℝ2

□

Theorem (Schoenflies Theorem) . If 𝐶 = 𝑓(𝑆1) is a simple closed curve in ℝ2, then there exists
a homeomorphism from ℝ2 to itself which takes 𝐶 to 𝑆1.

In particular:
• This homeomorphism maps the bounded component of ℝ2 ∖ 𝐶 to 𝐷2 ∖ 𝜕𝐷2, meaning this

component is ≅ 𝐷2 ∖ 𝜕𝐷2

• The unbounded componenet is ≅ ℝ2 ∖ 𝐷2

proof. Not too hard if 𝐶 is a simple polygon, but hard in general. Proof omitted. □
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Note . Suppose 𝑓 : 𝑆1 → ℝ2 is smooth (a 𝐶∞ diffeomorphism onto its image) and 𝐶 ≔ 𝑓(𝑆1). Let
𝑥 ∈ ℝ2 ∖ 𝐶. How can we tell whether 𝑥 is in the bounded or the unbounded component of ℝ2 ∖ 𝐶?

• Choose a base point 𝑥0 ∈ ℝ2 ∖ 𝐶 that is “far away” from 𝐶
• Choose a smooth path 𝛾𝑥 ⊆ ℝ2 for 𝑥 to 𝑥0 which intersects 𝐶 transversely
• 𝑥 is in the bounded component if |𝐶 ∩ 𝛾𝑥| is odd and in the unbounded component otherwise.

1.21.1. Situation in higher dimensions
Let 𝑓 : 𝑆𝑛−1 → ℝ𝑛 continuous injection. 𝑆 ≔ 𝑓(𝑆𝑛−1) ⊆ ℝ𝑛. Jordan Curve Theorem remains true:
ℝ𝑛 ∖ 𝐶 has exactly 2 path components, can be proved by cohomology and Lefschetz duality.
But, in general:
• The bounded component is not ≅ 𝐷𝑛 ∖ 𝜕𝐷𝑛

• The unbounded component is not ≅ ℝ𝑛 ∖ 𝐷𝑛

Example (in ℝ3) . Construct a nontrivial embedding of 𝕊2 into ℝ3.

Get an embedding of 𝑆2 into ℝ3 such that the unbounded component is not ≅ ℝ3 ∖ 𝐷3.
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1.22 Local flatness and collar neighborhoods

Definition (Local Flatness or Topological flatness) . A topological embedding 𝑓 : 𝑆𝑛−1 → ℝ𝑛

is locally flat if

∀𝑝 ∈ 𝑆 ≔ 𝑓(𝑆𝑛−1). ∃ an open neighborhood 𝑈 ⊆ ℝ𝑛. (𝑈, 𝑈 ∩ 𝑆) ≅ (ℝ𝑛, ℝ𝑛−1 × {0})

Example . The Alexander horned sphere is not locally flat.

Example (for codimension 2 embeddings) . Embed ℝ into ℝ3 by infinite many decreasing “knots”
that has a limit point. This embedding is not locally flat.

Example (for codimension 2 embeddings) . Let 𝐾 ⊂ ℝ3 ⊆ ℝ3 ∪ {∞} ≅ 𝑆3 a knotted simple closed
curve. In 𝐷4, connect each point of 𝐾 to the center of 𝐷4 using a straight line segment.

Definition (bi-collared) . Let 𝑓 : 𝑆𝑛−1 → ℝ𝑛 is a continuous injection, 𝑆 ≔ 𝑓(𝑆𝑛−1). 𝑆 is bi-
collared if there exists an open neighborhood 𝑈 ⊆ ℝ𝑛 of 𝑆 and a homeomorphism

𝐹 : (𝑆𝑛−1 × (−1, 1)) ⟶
≅

𝑈

such that 𝐹 |𝑆𝑛−1×{0} = 𝑓

Theorem (Brown, 1961) . 𝑆 locally flat ⟹ 𝑆 bi-collared

Theorem (Generalized Schoenflies Theorem, Brown 1960) . 𝑆 bi-collared ⟹ the components
of 𝑆𝑛 ∖ 𝑆 are ≅ 𝐷𝑛 ∖ 𝜕𝐷𝑛

Note . For 𝑛 = 2, 𝐶 is locally flat ⟹
Brown

 𝐶 bi-collared ⟹
GST

 the components of 𝑆2 ∖ 𝐶 are ≅ 𝐷2 ∖ 𝜕𝐷2
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Chapter 2

The classification of surfaces

Definition (Notations) .

𝐷𝑛 ≔ {(𝑥1, …, 𝑥𝑛) ∈ ℝ𝑛 | 𝑥2
1 + … + 𝑥2

𝑛 ≤ 1}

𝑆𝑛−1 ≔ 𝜕𝐷𝑛

𝐷1 = [−1, 1]

𝐷0 = {1 point}

2.1 Manifolds

Definition (𝑛-manifold) . An 𝑛-manifold is a 2nd countable Hausdorff space 𝑀  such that every
𝑥 ∈ 𝑀  has an open neighborhood 𝑈 ⊆ 𝑀  with 𝑈 ≅ ℝ𝑛.

So, 𝑀  locally “looks like” ℝ𝑛.

Fact . Every 𝑛-manifold can be embedded into ℝ2𝑛+1, i.e., it’s homeomorphic to a subspace of
ℝ2𝑛+1.

Theorem . Every compact 𝑛-manifold 𝑀  can be embedded into ℝ𝑁  for some 𝑁 < ∞.

proof. Cover 𝑀  by finitely many open sets 𝑈𝑖, …, 𝑈𝑘 with 𝑈𝑖 ≅ ℝ𝑛, possible since 𝑀  is a
compact 𝑛-manifold. For each 𝑖, let

𝑓𝑖 : 𝑈𝑖 → ℝ𝑛

be a homeomorphism. Define

𝑔𝑖 : 𝑀 → ℝ𝑛 ∪ {∞} ≅ 𝑆𝑛

by
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𝑔𝑖(𝑥) ≔ {𝑓𝑖(𝑥) 𝑥 ∈ 𝑈𝑖
∞ 𝑥 ∉ 𝑈𝑖

Exercise: check that 𝑔𝑖 is continuous (use that 𝑈 ⊆ ℝ𝑛{∞} ⊆ 𝑆𝑛 is open iff 𝑈  is an open subset
of ℝ𝑛 or ∞ ∈ 𝑈  and (ℝ𝑛 ∪ {∞}) ∖ 𝑈  is a compact subspace of ℝ𝑛)

Let ℎ𝑖 : 𝑀 → ℝ𝑛+1 be the composition

𝑀 →
𝑔𝑖

𝑆𝑛 ↪ ℝ𝑛+1

then ℎ𝑖 is continuous. Now define 𝐹 : 𝑀 →

𝑘 copies
⏞⏞⏞⏞⏞⏞⏞ℝ𝑛+1 × … × ℝ𝑛+1 = ℝ𝑘(𝑛+1) by

𝐹(𝑥) ≔ (ℎ1(𝑥), …, ℎ𝑘(𝑥))

Exercise: 𝐹  continuous injective, thus a homeomorphism onto its image because 𝑀  compact
and ℝ𝑘(𝑛+1) Hausdorff. □

Definition (surface) . A 2-manifold is called a surface.

Definition (𝑛-manifold with boundary) . A 𝑛-manifold with boundary is a 2nd countable Haus-
dorff space 𝑀  s.t. ∀𝑥 ∈ 𝑀. ∃ an open neighborhood 𝑈 ⊆ 𝑀 of 𝑥.  and a homeomorphism ℎ
from 𝑈  to an open subset of ℍ𝑛, where

ℍ𝑛 ≔ {(𝑥1, …, 𝑥𝑛) ∈ ℝ𝑛 | 𝑥𝑛 ≥ 0}
𝜕ℍ𝑛 ≔ {(𝑥1, …, 𝑥𝑛) ∈ ℝ𝑛 | 𝑥𝑛 = 0}

Fact .
1. If 𝑥 is an interior point of 𝑀 , then it has an open neighborhood ≅ ℝ𝑛.
2. If 𝑥 is a boundary point of 𝑀 , then it has an open neighborhood ≅ ℍ𝑛

3. A point 𝑥 ∈ 𝜕𝐻 can’t simultaneously be an interior point and a boundary point.

Definition . 𝜕𝑀 ≔ {all boundary points of 𝑀}

Fact . 𝜕𝑀  is an (𝑛 − 1)-manifold without boundary

Definition . An 𝑛-manifold 𝑀  is called closed if it is compact and has empty boundary.

Example . ℝ𝑛 is an 𝑛-manifold without boundary (but not closed for 𝑛 > 0 because not compact)

Example . ℍ𝑛 is an 𝑛-manifold with boundary

Example . 𝑆𝑛 is a closed 𝑛-manifold and 𝑥 ∈ 𝑆𝑛 is one of the sets
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𝑈 ≔ 𝑆𝑛 − {𝑁} ≅ ℝ𝑛

𝑉 ≔ 𝑆𝑛 − {𝑆} ≅ ℝ𝑛

Example . Every countable discrete space is a 0-manifold (since 2nd countable, Hausdorff, and
locally homeomorphic to ℝ0 = {0})

Example . With 𝑛 = 1, the only compact nonempty connected 1-manifolds are [0, 1] and 𝑆1.

Example .

ℍ2
+ = {(𝑥1, 𝑥2) ∈ ℝ2 | 𝑥1 ≥ 0 and 𝑥2 ≥ 0}

and ℍ2
+ ≅ ℍ2, hence a 2-manifold with boundary

Example . Goal: Classify compact surfaces with boundary up to homeomorphism.

1. 2-Sphere

𝑆2 = {𝑥 ∈ ℝ3 | ‖𝑥‖ = 1}

2. Real Projective Plane

𝑃 = ℝℙ2 = {Unoriented straight lines through the origin ∈ ℝ3

= 𝑆2

𝑥 ∼ −𝑥

Can check that the quotient map 𝑆2 → 𝑃  is a local homeomorphism (in fact, a covering map),
that is, every 𝑥 ∈ 𝑆2 has a neighborhood that gets mapped homeomorphically to an open set in
𝑃 .

3. Torus

𝑇 = 𝑆1 × 𝑆1 = [0, 1]2

{(0,𝑡)∼(1,𝑡)
(𝑠,0)∼(𝑠,1)}

≅ ℝ2

ℤ2

Here, ℝ2

ℤ2  means that we identify two points 𝑥, 𝑦 ∈ ℝ2 if 𝑥 − 𝑦 ∈ ℤ2. Explicit quotient:

ℝ2 ⟶ 𝑆1 × 𝑆1 = 𝑇
(𝑠, 𝑡) ⟼ (𝑒2𝜋𝑖𝑠,2𝜋𝑖𝑡) ∈ ℂ × ℂ

this map is a local homeomorphism.

4. Klein Bottle

𝐾 = [0, 1]2

{ (0,𝑡)∼(1,𝑡)
(𝑠,0)∼(1−𝑠,1)}

There exists a map

𝑇 ⟶ 𝐾

given by
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(𝑠, 𝑡) ⟼ (𝑠, 2𝑡) if 𝑡 ∈ [0, 1
2
]

(𝑠, 𝑡) ⟼ (1 − 𝑠, 2𝑡 − 1) if 𝑡 ∈ [1
2
, 1]

2.2 Invariance of domain

Theorem . 𝑈 ⊆ ℝ𝑛 open. If 𝑓 : 𝑈 → ℝ𝑛 is a continuous injection, then 𝑓  is open.

proof. Suffices to show that every sufficiently small open ball 𝐵(𝑥, 𝜀) ⊆ ℝ𝑛 with 𝐵(𝑥, 𝜀) ⊆ 𝑈
is sent to an open subset of ℝ𝑛. Let 𝐵 be such a ball. By making 𝜀 smaller, we can assume 𝐵 ⊆
𝑈 , then by Jordan Separation Theorem, ℝ𝑛 ∖ 𝑓(𝜕𝐵) has 2 path components. Moreover, 𝑓(𝐵) is
path-connected since 𝐵.

Fact . ℝ𝑛 ∖ 𝑓(𝐵) is also path-connected

then 𝑓(𝐵) and ℝ𝑛 ∖ 𝑓(𝐵) must be the path componenets of ℝ𝑛 ∖ 𝑓(𝜕𝐵), then 𝑓(𝐵) is open and
ℝ𝑛 is locally path connected. □

Corollary . If 𝑈 ⊆ ℝ𝑚 and 𝑉 ⊆ ℝ𝑛 are nonempty open subsets with 𝑈 ≅ 𝑉 , then 𝑚 = 𝑛.

proof. Suppose 𝑚 ≠ 𝑛, and assume WLOG 𝑚 > 𝑛. Consider a homeomorphism

𝑓 : 𝑈 ⟶
≅

𝑉

and compose 𝑓  with the embedding

ℝ𝑛 ⟶ ℝ𝑛 × {0} ↪ ℝ𝑚

to get a continuous injection

𝑓 ′ : 𝑈 ⟶ ℝ𝑚

by theorem, 𝑓 ′ is open, then 𝑓 ′(𝑈) is open but 𝑓 ′(𝑈) ∉ ∅ and 𝑓 ′(𝑈) ⊆ ℝ𝑛 × {0} ≅ ℝ𝑛, contra-
diction. □

2.3 Surfaces with boundary

Definition . Let 𝑀  be connected surface, possibly with boundary.
𝐷 ⊆ 𝑀 ∖ 𝜕𝑀  embedded closed disk, i.e.
𝐷 = 𝑓(𝐷2) for a continuous injection 𝑓 : 𝐷2 → 𝑀 ∖ 𝜕𝑀 . Can check that 𝑓(𝐷2 ∖ 𝜕𝐷2) = 𝐷 ∖
𝜕𝐷. Then
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𝑀(1) ≔ 𝑀 ∖ 𝑓(𝐷2 ∖ 𝜕𝐷2)

Remark . 𝑀(1) is independent of the choice of 𝐷, up to homeomorphism.
Reason:𝑀  connected space, 𝐷1, 𝐷2 ⊆ 𝑀 ∖ 𝜕𝑀  embedded closed disks.

Lemma (Disk lemma) . There exists a homeomorphism with ℎ(𝐷1) = 𝐷2

Definition (Generalization) . 𝑀  be connected space,

𝐷1, …, 𝐷𝑛 ⊆ 𝑀 ∖ 𝜕𝑀

be disjoint embedded closed disks. then

𝑀(𝑛) ≔ 𝑀 ∖ (⋃
𝑛

𝑖=1
int(𝐷𝑖))

Example (Surfaces with 𝜕𝑀 ≠ ∅) .

1. Closed disk

𝐷2 ≅ 𝑆2 ∖ int(upper hemisphere) ≅ 𝑆2
(1)

2. Annulus / cylinder

𝑆1 × [0, 1] ≅ [0, 1]2

(0, 𝑡) ≅ (1, 𝑡)

≅ 𝑆2 ∖ nbhd{𝑁, 𝑆}

≅ 𝑆2
(2)

≅ 𝐷2
(1)

3. Möbius band

[0, 1]2

(0, 𝑡) ≅ (1, 1 − 𝑡)

There exists a 2-1 map fron the annulus to the Möbius band given by

(𝑠, 𝑡) ⟼ (2𝑠, 𝑡) if 𝑠 ∈ [0, 1
2
]

(𝑠, 𝑡) ⟼ (2𝑠 − 1, 1 − 𝑡) if 𝑠 ∈ [1
2
, 1]

Also:

Möbius band ≅ 𝑆2 − nbhd{𝑁, 𝑆}
𝑥 ∼ −𝑥

= 𝑃(1𝑑)
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Definition (Handle) . An 𝑖-handle (of dimension 𝑖 + 𝑗) is a space 𝐷𝑖 × 𝐷𝑗

Note . Abstractly:

𝐷𝑖 × 𝐷𝑗 ≅ 𝐷𝑖+𝑗

but the product structure on 𝐷𝑖 × 𝐷𝑗 will matter. For 𝑖 + 𝑗 = 2:

• 0-handle: 𝐷0 × 𝐷2 disk
• 1-handle: 𝐷1 × 𝐷1 square
• 2-handle: 𝐷2 × 𝐷0 disks

Definition . A 2 dimensional 2-handle body is a topology space 𝑀  that is built out of 2-
dimensional handles as follows:

0. Start with a finite collection of disjoint 2-dimension 0-handles

𝑀0 = ⋃
𝑘0

𝑖=1
ℎ0

𝑖 (0-handles)

1. Build 𝑀1 by attaching 2-dimension 1-handles to 𝑀0. That is,

𝑀1 = 𝑀0 ∪ ⋃
𝑘1

𝑗=1
ℎ1

𝑗

where we attach ℎ1
𝑗  to 𝑀0 using a continuous attaching maps

𝑓1
𝑗 ≔ (𝜕𝐷1) × 𝐷1 ⟶ 𝜕𝑀0 = ⋃

𝑘0

𝑖=1
𝜕ℎ0

𝑖

we’ll assume:
• 𝑓1

𝑗  is a topological embedding
• the images of the 𝑓1

𝑗  are disjoint for 𝑗 = 1, …, 𝑘1
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2. Build 𝑀 = 𝑀2 by attaching 2-dimensional 2-handles ℎ2
1, …, ℎ2

𝑘2
 to 𝜕𝑀1 using attaching

map

𝑓2
𝑗 : (𝜕𝐷2) × 𝐷0 ⟶ 𝜕𝑀1

with the same assumptions as above.

So that 𝑀2 is obtained from 𝑀1 from gluing 2-disks to some boundary components of 𝑀1.

Theorem (Rado, 1940s) . Up to homeomorphism,

{compact surfaces with boundary} = {2-dimensional 2-handle bodies}

We’ll use this without proof.

Definition (Handle Decomposition) . An identification of a surface 𝑀  with a 2-handle body is
called a handle decomposition of 𝑀 .

Example .

1. Annulus = ℎ0 ∪ ℎ1

2. Möbius band = ℎ0 ∪ ℎ1

3. 𝑆2 = ℎ0 ∪ ℎ2

4. 𝑃(1) = Möbius band, so

𝑃 = ℎ0 ∪ ℎ1 ∪ ℎ2
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Theorem . 𝑀, 𝐻 be spaces, 𝐵 ⊆ 𝑀, 𝐴 ⊆ 𝐻 be closed subsets, and homeomorphisms

𝑓, 𝑔 : 𝐴 → 𝐵

If 𝑔−1 ∘ 𝑔 extends to a homeomorphism of 𝐻 or 𝑓 ∘ 𝑔−1 extends to a homeomorphism of 𝑀 ,
then

𝐻 ⊔𝑓 𝐻 ≅ 𝑀 ⊔𝐵 𝑀

proof. Assume 𝑔−1 ∘ 𝑓  extends to a homeomorphism 𝐹 : 𝐻 → 𝐻, then

↑id

↑𝐹

↑

⊔𝑓

↑

⊔𝑔

𝑀 𝑀

𝐻 𝐻′

is the desired homeomorphism. If 𝑓 ∘ 𝑔−1 extends over 𝑀 , replace 𝑓  and 𝑔 by their inverses. □

Theorem . If 𝑀  is connected, then there exists only one way to attach (via an embedding 𝑓 :
𝜕𝐷2 → 𝜕𝑀) a 2-handle up to homeomorphism.

proof. Let 𝑓, 𝑔 : 𝜕𝐷2 → 𝜕𝑀  be two attaching maps. First note that 𝑓(𝜕𝐷2) and 𝑔(𝜕𝐷2) must
be connected components 𝑆1

1  and 𝑆1
2  of 𝜕𝑀 . Suppose 𝑆1

1 ≠ 𝑆1
2 . By attaching disks to 𝑆1

1 , 𝑆1
2 ,

we get a surface 𝑀̂  such that 𝑀 = 𝑀2
(2). By lemma, there exists a homeomorphism ℎ : 𝑀 →

𝑀  with ℎ(𝑆1
1) = 𝑆1

2 , then 𝑔 and ℎ−1 ∘ 𝑔 differ by ℎ, which is defined on all of 𝑀 , then we can
assume 𝑆1

1 = 𝑆1
2 . Now 𝑓, 𝑔 are both homeomorphism:

𝑓, 𝑔 : 𝜕𝐷2 ⟶ 𝑆1
1

follows so is 𝑔−1 ∘ 𝑓  and it extends to a homeomorphism 𝐹 : 𝐷2 → 𝐷2, explicitly,

𝐹(𝑥) ≔ {
0 if 𝑥 = 0
‖𝑥‖ (𝑔−1 ∘ 𝑓)( 𝑥

‖𝑥‖) if 𝑥 ≠ 0

By the previous theorem,

𝑀 ⊔𝑓 𝐷2 ≅ 𝑀 ⊔𝑔 𝐷2

□
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Proposition . If 𝑀  is a 2-dimensional 2-handle body, then

𝑀 connected ⟺ 𝑀1(𝑀 without the 2-handles) connected

proof.
(⟹) Follows since every 2-handle gets attached to a single connected component of 𝑀1.
(⟸) Follows because each 2-handle is connected □

Remark . To clasify connected 2-handle bodies, it suffices to classify 2-handle bodies with 𝜕𝑀 ≠ ∅.

{ closed nonempty
connected surfaces}

homeomorphism
⟷

{
compact connected

surfaces with exactly
one boundary component

}

homeomorphism
𝑀 →→→→→→→→→→→→→→→→→→→→→→→→→ 𝑀(1)

Theorem . There exists only one way to attach a 0-handle

proof. Attaching a 0-handle is the same as taking the disjoin union with a disk 𝐷2. □

2.4 Isotopies

Definition (Isotopy) . Let 𝐵 a space, let

𝑔0, 𝑔1 : 𝐵 → 𝐵

be homeomorphisms. They are isotopic if there exists a continuous map

𝐺 : 𝐵 × 𝐼 → 𝐵

such that
1) 𝐺0 = 𝑔0
2) 𝐺1 = 𝑔1
3) 𝐺𝑡 : 𝐵 → 𝐵 is a homeomorphism for all 𝑡 ∈ 𝐼

where 𝐺𝑡(𝑏) ≔ 𝐺(𝑏, 𝑡). Can regard {𝐺𝑡 | 𝑡 ∈ 𝐼} is a “continuous family” of homeomorphisms
𝐺𝑡 : 𝐵 → 𝐵. Call 𝐺 an isotopy from 𝑔0 to 𝑔1.

Definition (Ambient isotopic) . 𝑔0, 𝑔1 are ambient isotopic if there exists an isotopy 𝐺 such that

𝐺0 = id𝐵 and 𝐺1 ∘ 𝑔0 = 𝑔1

Definition . Let 𝐺 : 𝐵 × 𝐼 → 𝐵 be an isotopy, define
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𝐺̃ : 𝐵 × 𝐼 ⟶ 𝐵 × 𝐼

by

𝐺̃(𝑏, 𝑡) ≔ (𝐺(𝑏, 𝑡), 𝑡)

then 𝐺̃ is a continuous bijection.

Fact . If 𝐵 is compact and Hausdorff, then 𝐺̃ is a homeomorphism. (by compact-to-Hausdorff
theorem)

Remark . This remains true if 𝐵 is only locally compact. (idea: replace 𝐵 by its 1-point compacti-
fication)

Theorem . Let 𝑀  be compact surface, ℎ1 = 𝐷1 × 𝐷1, the 2-dimensional 1-handle,

𝑓, 𝑔 : (𝜕𝐷1) × 𝐷1 ⟶ 𝜕𝑀

be embeddings. If 𝑓, 𝑔 are ambient isotopic, then

𝑀 ⊔𝑓 ℎ1 ≅ 𝑀 ⊔𝑔 ℎ1

proof. We need:

Fact (Brown) . 𝑀  be a compact surface. 𝜕𝑀  has a collar neighborhood in 𝑀 . That is, a
closed set 𝐶 ⊆ 𝑀  with 𝐶 ⊇ 𝜕𝑀  and such that there exists a homeomorphism

𝜑 : 𝐶 ⟶ (𝜕𝑀) × 𝐼

which restricts to the “identity map”

𝜕𝑀 ⟶ (𝜕𝑀) × {1}

In this case, 𝜑−1((𝜕𝑀) × (0, 1]) is open in 𝑀 .

Suppose 𝑓, 𝑔 : (𝜕𝐷1) × 𝐷1 → 𝜕𝑀  are ambient isotopic, and let

𝐺 : (𝜕𝑀) × 𝐼 → 𝜕𝑀

be an ambient isotopy between 𝑓  and 𝑔. Because 𝜕𝑀  is compact, 𝐺̃ is a homeomorphism. Regard
𝐺̃ as

𝐺̃ : 𝐶 ⟶ 𝐶

where 𝐶 is a collar neighborhood of 𝜕𝑀  in 𝑀 . Define the homeomorphism between 𝑀 ⊔𝑓 ℎ′

and 𝑀 ⊔𝑔 ℎ′ by letting it to be id on ℎ′ and 𝑀 ∖ 𝜑−1(𝜕𝑀) × (0, 1], and 𝐺̃ for the rest. □
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2.4.1. Homeomorphisms of 𝐼 = [0, 1]

Definition . Homeo(𝑋) = {homeomorphism 𝑓 : 𝑋 → 𝑋} is a group w.r.t. composition.

Lemma . Homeo([0, 1]) = {strictly monotone bijection 𝑓 : [0, 1] → [0, 1]}

proof. Every 𝑓 ∈ Homeo([0, 1]) is monotonous by the intermediate value theorem. (exercise).

Conversely, if 𝑓 : [0, 1] → [0, 1] is a monotonous bijection then it bijectively send intervals of the
form (𝑎, 𝑏), [0, 𝑏), (𝑎, 1], for 0 < 𝑎 < 𝑏 < 1 to intervals of the same type. 𝑓  is a homeomorphism
because intervals form a basis for the topology of [0, 1]. □

Note . If 𝑓 ∈ Homeo([0, 1]), then
• 𝑓  increasing, then 𝑓  fixes 0 and 1
• 𝑓  decreasing, then 𝑓  swaps 0 and 1

Lemma . If 𝑓 ∈ Homeo([0, 1]) is increasing, then it isotopic to id[0,1].

proof. Define

𝐺𝑡(𝑠) ≔ (1 − 𝑡)𝑓(𝑠) + 𝑡𝑠 for (𝑠, 𝑡) ∈ [0, 1]2

then 𝐺0 = 𝑓  and 𝐺1 = id[0,1]. Moreover, each 𝐺𝑡 : [0, 1] → [0, 1] is a strictly increasing contin-
uous map and fixes 0 and 1, then each 𝐺𝑡 is surjective and injective and monotone, hence a
homeomorphism. Then 𝐺 is an isotopy from 𝑓  to id[0,1].

Likewise, if 𝑓 ∈ Homeo([0, 1]) is decreasingm then it is isotopic to the map that swaps 0 and 1
(given by 𝑟(𝑠) ≔ 1 − 𝑠). □

Lemma . id[0,1] is not isotopic to 𝑟.

proof. Suppose {𝐺𝑡 | [0, 1] → [0, 1]} is an isotopy from 𝐺0 = id[0,1] to 𝐺1 = 𝑟. Each 𝐺𝑡 fixes or
swaps 0 or 1. ∀𝑡 ∈ [0, 1]. 𝐺𝑡(0) ∈ {0, 1}. Define 𝛾(𝑡) ≔ 𝐺𝑡(0) is a path in {0, 1} with

𝛾(0) = 𝐺0(0) = 0 and 𝛾(1) = 𝐺1(0) = 1

then {0, 1} is path connected, contradiction. □

Definition (Mapping class group) .

MCG(𝑋) ≔ Homeo(𝑋)
∼

where ∼ identify two homeomorphisms if they are isotopic forms a group called the mapping
class group of 𝑋.

Remark .
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MCG([0, 1]) ≅ ℤ2

likewise, if 𝑋 = (0, 1) or 𝑋 = ℝ, then

Homeo(𝑋) = {strictly monotone bijection 𝑓 : 𝑋 → 𝑋}

and

MCG(𝑋) ≅ ℤ2

Corollary . Every homeomorphism 𝑓 : (0, 1) → (0, 1) extends to a homeomorphism 𝑓 : [0, 1] →
[0, 1] defined by:

𝑓|{0,1} = id{0,1} if 𝑓 increasing

𝑓|{0,1} = 𝑟|{0,1} if 𝑓 decreasing

proof. 𝑓  defined as above is a monotone bijection and hence a homeomorphism. □

2.4.2. Homeomorphism of 𝑆1

Lemma . ∀𝑓 ∈ Homeo(𝑆1). ∃𝑓 ∈ Homeo(ℝ).

↑𝑓

↑𝑓

↑

𝑝

↑

𝑝

ℝ ℝ

𝑆1 𝑆1

commutes, where 𝑝(𝑥) ≔ 𝑒2𝜋𝑖𝑥 ∈ 𝑆1 ⊆ ℂ. Moreover 𝑓  is unique up to

𝑓 ↝ 𝑓 + 𝑛 for 𝑛 ∈ ℤ

proof.
• Existence of 𝑓

Can assume WLOG that 𝑓  fixes 1, then we have
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↑𝑓 ≅

↑𝑓|… ≅

↑𝑔 ≅

↑𝑔 ≅

↑ ↑

↑

𝑝 ≅

↑

𝑝 ≅

↑ ↑

𝑆1 𝑆1

𝑆1 ∖ {1} 𝑆1 ∖ {1}

(0, 1) (0, 1)

[0, 1] [0, 1]

We can assume WLOG that 𝑔 is increasing. Now define 𝑓 : ℝ → ℝ by

𝑓(𝑥) ≔ 𝑔(𝑥 − ⌊𝑥⌋) + ⌊𝑥⌋

can check that 𝑓  is a homeomorphism with 𝑝 ∘ 𝑓 = 𝑓 ∘ 𝑝.
• Uniqueness of 𝑓  up to 𝑓 ↝ 𝑓 + 𝑛

Suppose 𝑓, 𝑔 : ℝ → ℝ are two homeomorphisms that make the diagram commute. Then

𝑝 ∘ 𝑓 = 𝑝 ∘ 𝑔

⟹ ∀𝑥 ∈ ℝ. 𝑔(𝑥) = 𝑓(𝑥) + 𝑛𝑥 for 𝑛𝑥 ∈ ℤ

⟹ 𝑔 − 𝑓 ∈ ℤ

⟹ 𝑔 − 𝑓 must be constant because every constant map ℝ → ℤ is a homeomorphism

□

Remark . If 𝑔 is increasing, then 𝑓  satisfies

∀𝑚 ∈ ℤ. 𝑓(𝑥 + 𝑚) = 𝑥̃ + 𝑚

Definition . Call 𝑓 ∈ Homeo(𝑆1)
• orientation preserving if 𝑓  is increasing
• orientation reversing if 𝑓  is decreasing

Lemma . If 𝑓 ∈ Homeo(𝑆1) is orientation preserving, then it is isotopic to id𝑆1 .
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proof. Let 𝑓 : ℝ → ℝ be a lift of 𝑓  and define

𝐺 : ℝ × 𝐼 → ℝ

by 𝐺(𝑥, 𝑡) ≔ (1 − 𝑡)𝑓(𝑥) + 𝑡𝑥. Then

1. 𝐺 is isotopy from 𝐺0 = 𝑓  to 𝐺1 = idℝ (to prove this, use that each 𝐺(−, 𝑡) is a continuous
strictly monotonous surjection)

2. 𝐺 satisfies

∀𝑚 ∈ ℤ. 𝐺(𝑥 + 𝑚, 𝑡) = 𝐺(𝑥, 𝑡) + 𝑚

(again use that 𝑓  is increasing)

Then consider following diagram

↑𝐺
↑

continuous 𝐺

↑

𝑝 × id𝐼

↑

𝑝

ℝ × 𝐼 ℝ

𝑆1 × 𝐼 𝑆1

Then 𝐺 is an isotopy from 𝑓  to id𝑆1 . Likewise, if 𝑓  is orientation reversing, then it is isotopic to
𝑟(𝑧) ≔ 𝑧 for 𝑧 ∈ 𝑆1 ⊆ ℂ. □

Lemma . id𝑠1  is not isotopic to 𝑟.

proof. Suppose 𝐺 : 𝑆1 × 𝐼 → 𝑆1 is an isotopy from 𝐺0 = id𝑆1  to 𝐺1 = 𝑟. Define

𝐵 = 𝑖, 𝐶 = −1, 𝐴 = 1
𝑣𝑡 ≔ 𝐺𝑡(𝐵) − 𝐺𝑡(𝐴)

𝑤𝑡 ≔ 𝐺𝑡(𝐶) − 𝐺𝑡(𝐴)

𝛾(𝑡) ≔ {z-coordinate of 𝑣𝑡 × 𝑤𝑡} ∈ ℝ ∖ {0}

then 𝛾 is a path in ℝ ∖ {0} and 𝛾(0) > 0 and 𝛾(1) < 0, contradiction. □

Remark . MCG(𝑆1) ≅ ℤ2

Definition .

Homeo+(𝑆1) = {orientation preserving homeomorphisms 𝑓 : 𝑆1 → 𝑆1}

= [id𝑆1 ] < Homeo(𝑆1)
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Definition (Arc) . A proper subset 𝐼 ⊂ 𝑆1 will be called an arc if it is path connected. Equiva-
lently, 𝐼  is an arc if it is homeomorphic to [𝑎, 𝑏] ⊆ ℝ.

Lemma . Homeo+(𝑆1) acts transitively on pairs of disjoint arcs in 𝑆1. That is, if 𝐼, 𝐽 ⊆ 𝑆1 are
disjoint arcs, and 𝐼′, 𝐽 ′ are another pair of disjoint arcs, then there exists 𝑓 ∈ Homeo+(𝑆1)
such that 𝑓(𝐼) = 𝐼′ and 𝑓(𝐽) = 𝐽 ′.

proof. Can assume

𝐼′ = 𝑝([0, 1
4
]), 𝐽 ′ = 𝑝([1

2
, 3
4
])

after applying a rotation, we can then assume that the initial point (w.r.t. counterclock wise) of
𝐼  is at 1 ∈ 𝑆1.

⟹ 𝐼 = 𝑝([𝑎, 𝑏]), 𝑗 = 𝑝([𝑐, 𝑑]), 0 = 𝑎 < 𝑏 < 𝑐 < 𝑑 < 1

can define a piecewise linear homeomorphism 𝑓  that indices a 𝑓 : 𝑆1 → 𝑆1 with 𝑓(𝐼) = 𝐼′ and
𝑓(𝐽) = 𝐽 ′ □

2.5 Handle Slides

Theorem . Let 𝑀  be compact surface with boundary, 𝑆1
+, 𝑆1

− be two components of 𝜕𝑀 . Then
up to homeomorphism, there exists at most two ways of attaching a 2-dimensional 1-handle
to 𝑀  such that the sets {±1} × 𝐷2 are attached to 𝑆1

±.

More precisely, given

𝑓, 𝑔 : {−1, 1} × 𝐷1 → 𝑆1
+ ∪ 𝑆1

− ⊆ 𝜕𝑀

be two embeddings whose image intersect both 𝑆1
+ and 𝑆1

−, then either

𝑀 ⊔𝑓 ℎ1 ≅ 𝑀 ⊔𝑔 ℎ1

or

𝑀 ⊔𝑓 ℎ1 ≅ 𝑀 ⊔𝑔∘𝑅 ℎ1

or both, where 𝑅 : {−1, 1} × 𝐷1 → {−1, 1} × 𝐷1 is the identity on {−1} × 𝐷1 and the reflec-
tion 𝑥 ⟼ −𝑥 on {+1} × 𝐷1.

proof.

1) Can assume that 𝑓, 𝑔 both map {−1} × 𝐷1 to 𝑆1
− and {+1} × 𝐷1 to 𝑆1

+ since there exists a
homeomorphism ℎ : ℎ1 → ℎ1 that exchanges {−1} × 𝐷1 and {+1} × 𝐷1

2) Can assume that im(𝑓) = im(𝑔) follows because Homeo+(𝑆+) acts transitively on single
intervals in 𝑆1 and on disjoint pairs.
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3) Can assume that

𝑔−1 ∘ 𝑓|{−1}×𝐷 : {−1} × 𝐷1 → {−1} × 𝐷1

is increasing, since there exists a homeomorphism ℎ′ : ℎ1 → ℎ1 which restricts to an orien-
tation-reversing homeo on {−1} × 𝐷1

4) Can then assume that

𝑔−1 ∘ 𝑓|{−1}×𝐷 = id{−1}×𝐷1

since any increasing homeomorphism of {−1} × 𝐷1 is isotopic to id{−1}×𝐷1 , then

𝑔|{−1}×𝐷 = 𝑓|{−1}×𝐷

this leaves with 2 possibilities:
1) 𝑔−1 ∘ 𝑓 |{+1}×𝐷1  is increasing ⟹ can assume 𝑓 = 𝑔
2) 𝑔−1 ∘ 𝑓 |{+1}×𝐷1  is decreasing ⟹ can assume 𝑓 = 𝑔 ∘ 𝑅

□

Note . A handle slide induces a homeomorphism

(𝑀 ∪ ℎ1
2) ∪ ℎ1

1 → (𝑀 ∪ ℎ1
2) ∪ ℎ̃1

1

which is the identity except in collar neighborhood of

𝜕(𝑀 ∪ ℎ1
2) ⊆ 𝑀 ∪ ℎ1

2

Remark . Handle slides can also be used to slide 1-handles off of each other
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2.6 Orientations

Definition (Orientations) . Let 𝑆 be a space homeomorphic to 𝑆1. Then an orientation of
𝑆 is an equivalence class of homeomorphisms 𝑓 : 𝑆1 → 𝑆 where two such 𝑓, 𝑔 : 𝑆1 → 𝑆 are
equivalent if 𝑔−1 ∘ 𝑓  is isotopic to id𝑆1 .

Definition . Let 𝑀  be a 2-dimensional handle body, 𝑀0 be union of all 0-handles. Assume all
1-handles are attached to 𝜕𝑀0 and the images of the attaching maps are pairwise disjoint.
Then an orientation on 𝑀  is a choice of orientation on the boundary of each handle in 𝑀
such that for every 1-handle, the attaching map

𝑓 : (𝜕𝐷1) × ⟶ 𝜕𝑀0

has the property that 𝑓± ≔ 𝑓|{±1}×𝐷1

Example .
• 𝑀  = annulus has 2 orientations
• 𝑀  = Möbius strip has no orientation

Lemma . A connected handle body 𝑀  either admit zero or two orientations.

Theorem . 𝑀  is non-orientable iff the Möbius strip can be embedded into 𝑀

Example . 𝑆2, 𝑇  orientable, 𝑃 , 𝐾 non-orientable.

Definition (Boundary Connected Sum) . 𝑀, 𝑁  connected surfaces with 𝜕𝑀 ≠ ∅, 𝜕𝑁 ≠ ∅,

𝑓+ : {+1} × 𝐷1 ⟶ 𝜕𝑀

𝑓− : {−1} × 𝐷1 ⟶ 𝜕𝑁

be two embeddings, then the boundary connected sum of 𝑀  and 𝑁  is the surface

𝑀 ♮ 𝑁 ≔ 𝑀 ⊔𝑓1
(𝐷1 × 𝐷1) ⊔𝑓2

𝑁

Remark . Up to homeomorphism, 𝑀♮𝑁  does not depend on the choice of 𝑓+ and 𝑓−

proof.
• If 𝑀, 𝑁  are connected, then Homeo(𝑀) and Homeo(𝑁) act transitively on the components

of 𝜕𝑀  and 𝜕𝑁 , respectively.
• If 𝑆 is component of 𝜕𝑀  and 𝜕𝑁m then Homeo+(𝑆) acts transitively on intervals in 𝑆.
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• If 𝑆 is a component of 𝜕𝑀  where 𝑀  is a compact surface, then there exists a homeomorphism
ℎ : 𝑀 → 𝑀  which sends 𝑆 to itself and restricts to an orientation-reversing homeomorphism
of 𝑆.

□

Definition (Connected Sum) . Let 𝑀, 𝑁  be connected surface, possible without boundary, then
the connected sum of 𝑀  and 𝑁 is the surface

𝑀 ♯ 𝑁 ≔ 𝑀(1) ⊔𝑓 𝑁(1)

where 𝑓  is a homeomorphism

(𝜕𝑀(1)) ∖ 𝜕𝑀 ⟶ (𝜕𝑁(1)) ∖ 𝜕𝑁

Remark .

𝑀 ♯ 𝑁 ≅ (𝑀(1) ∪ 𝑁(1)) ∪ cylinder

= (𝑀(1) ∪ 𝑁(1)) ∪ (𝐿1 ∪ ℎ2)

= (𝑀(1) ♮ 𝑁(1)) ∪ ℎ2

In particular,

(𝑀 ♯ 𝑁)(1) = 𝑀(1) ♮ 𝑁(1)

Example . 𝐷2 ♮ 𝐷2 ≅ 𝐷2

In general, for 𝑀  compact space with 𝜕𝑀 ,

𝑀 ♮ 𝐷2 ≅ 𝑀

Lemma . 𝑃 ♯ 𝑃 ≅ 𝐾 where 𝑃  is the projective plane and 𝐾 is the Klein bottle.

proof.
1. 𝐾 = 𝑀 ∪ 𝑀 ′ ≅ 𝑃(1) ∪ 𝑃(1) = 𝑃 ♯ 𝑃
2. 𝐾(1) ≅ 𝑃(1) ♮ 𝑃(1) = (𝑃 ♯ 𝑃)(1) ⟹ 𝐾 ≅ 𝑃 ♯ 𝑃

□

Lemma (Fundamental Lemma of Surface Theory) .

𝑇 ♯ 𝑃 ≅ 𝐾 ♯ 𝑃 ≅ 𝑃 ♯ 𝑃 ♯ 𝑃

where 𝑇  is the torus, 𝑃  is the projective plane, and 𝐾 is the Klein bottle.
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Theorem (Classification Theorem) . Every closed nonempty connected surface 𝑀  is homeo-
morphic to exactly one of the following:

1. 𝑀  orientable

𝑇 (𝑔) = 𝑆2 ♯ 𝑇 ♯ … ♯ 𝑇⏟
𝑔

(with 𝑔 ≥ 0)

2. 𝑀  non-orientable

𝑃 (ℎ) = 𝑃 ♯ … ♯ 𝑃⏟⏟⏟⏟⏟
ℎ

(with ℎ ≥ 1)

Notation:

𝑇 (𝑔)
(𝑝) = 𝑇 (𝑔) − {𝑝 open disks with disjoint closures}

𝑃 (ℎ)
(𝑝) = 𝑃 (ℎ) − {𝑝 open disks with disjoint closures}

Corollary . Every nonempty compact connected surface 𝑀  with 𝑝 ≥ 0 boundary components
is homeomorphic to exactly one of the following:

1. 𝑇 (𝑔)
(𝑝) , with 𝑔 ≥ 0

2. 𝑃 (ℎ)
(𝑝) , with ℎ ≥ 1

Definition .

• 𝑔 is the genus of 𝑇 (𝑔)
(𝑝)

• ℎ is the non-orientable genus or crosscap number of 𝑃 (ℎ)
(𝑝)
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Monoid of homeomorphism classes of closed connected surface

Now prove the Classification Theorem.

proof.

1. By Rados’s Theorem, can assume 𝑀  is a handle body

2. If 𝑀  has more than one 0-handle, then there must a 1-handle ℎ′ connecting two distinct 0-
handles, ℎ0

1, ℎ0
2

⟹ ℎ0
1 ∪ ℎ1 ∪ ℎ0

2 ≅ 𝐷2

⟹ can replace ℎ0
1 ∪ ℎ1 ∪ ℎ0

2 be a single 0-handle
⟹ can reduce the number of zero handles
⟹ can assume 𝑀  ahs only one 0-handle

3. Can restrict to the case where 𝑀  has no 2-handles because attacing 2-handle is unique up to
homeomorphism

4. We may assume

𝑀 = ℎ0 ∪ (ℎ1
1 ∪ …ℎ1

𝑛)
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Now use induction on 𝑘, the number of 1-handles.

Fact . If 𝑀  is a compact connected surface, then every permutation of the components of
𝜕𝑁  can be realized by a homeomorphism of 𝑁 . (Follows from Disk Lemma)

• Base case: if 𝑘 = 0, then 𝑀 = ℎ0 ≅ 𝐷2 = 𝑆2
(1) = 𝑇 (0)

(1)
• Inductive step: Assume 𝑘 > 0, and let

𝑁 ≔ ℎ0 ∪ (ℎ1 ∪ … ∪ ℎ1
𝑘−1)

Case 1: 𝑀  orientable and ℎ1
𝑘 is attached to a single component of 𝜕𝑁 . Can assume

𝑀 ≅ 𝑁 ♮ annulus

≅ 𝑇 (𝑔)
(𝑝) ♮ 𝑆2

(2)

≅ 𝑇 (𝑔+1)
(𝑝)

Case 2: 𝑀  orientable and ℎ1
𝑘 is attached to two distinct componenets of 𝜕𝑁 , then 𝜕𝑁  has at

least 2 componenets. By induction hypothesis,

𝑁 ≅ 𝑇 (𝑔)
(𝑝)

≅ 𝑇 (𝑔)
(𝑝−1) ♮ 𝑆2

(2)

≅ 𝑇 (𝑔)
(𝑝−1) ♮ 𝑇(1)

≅ 𝑇 (𝑔+1)
(𝑝−1)

Case 3: 𝑀  is non-orientable and ℎ1
𝑘 is attached to a single boundary component.

𝑀 = 𝑁 ♮ annulus ≅ 𝑃 (ℎ)
(𝑝) ♮ 𝑆2

(2) ≅ 𝑃 (ℎ)
(𝑝+1)

or

𝑀 ≅ 𝑁 ♮ 𝑃(1) = 𝑃 (ℎ)
(𝑝) ♮ 𝑃(1) = 𝑃 (ℎ+1)

(𝑝)

or

𝑀 ≅ 𝑇 (𝑔)
(𝑝) ♮ 𝑃(1) ≅ 𝑃 (2𝑔+1)

(𝑝)

Case 4: 𝑀  is non-orientable and ℎ1
𝑘 is attached to two distinct components of 𝜕𝑁 , then 𝜕𝑁

has at least 2 components, 𝑁 ≅ 𝑁 ′ ♮ 𝑆2
(2), then

𝑀 ≅ 𝑁 ′ ♮ 𝑇(1) ≅ 𝑃 (ℎ)
(𝑝) ♮ 𝑇(1) ≅ 𝑃 (ℎ+2)

(𝑝)

or

𝑀 ≅ 𝑁 ′ ♮ 𝐾(1) = 𝑇 (𝑔)
(𝑝) ♮ 𝐾(1) = 𝑃 (2𝑔+2)

(𝑝)

□
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Definition (Pointed Space) . A pointed space is a pair (𝑋, 𝑥0) where 𝑋 is a topological space
and the “basepoint” 𝑥0 ∈ 𝑋 is a point. The fundamental group is a topological invaraint for
pointed spaces.

3.1 Homotopies

Recall . A path in 𝑋 is a continuous map

𝑓 : [0, 1] ⟶ 𝑋

Concatenation of Paths:

𝑓, 𝑔 : [0, 1] ⟶ 𝑥 paths with 𝑓(1) = 𝑔(0)

forms new path

(𝑓 ⋆ 𝑔)(𝑠) ≔ {
𝑓(2𝑠) if 𝑠 ∈ [0, 1

2]
𝑔(2𝑠 − 1) if 𝑠 ∈ [1

2 , 1]

Definition (Homotopy) . 𝑓, 𝑔 : 𝑋 ⟶ 𝑌  be two continuous maps. A homotopy from 𝑓  to 𝑔 is
a continuous map

𝐻 : 𝑋 × 𝐼 ⟶ 𝑌

such that 𝐻(−, 0) = 𝑓  and 𝐻(−, 1) = 𝑔. If such 𝐻 exists, then 𝑓  and 𝑔 are called homotopic
denoted 𝑓 ≃ 𝑔.

Note . Can regard equivalence

{𝐻𝑡 ≔ 𝐻(−, 𝑡)}

as a continuous family of continuous maps 𝐻𝑡 : 𝑋 ⟶ 𝑌 .
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↑

𝑥 ↦ (𝑥, 1)

↑

𝑥 ↦ (𝑥, 0)

↑𝐻

↑

𝑔

↑

ℎ

𝑋

𝑋 × 𝐼 𝑌

𝑋

Definition (Path Homotopies) . 𝑓, 𝑔 : 𝐼 ⟶ 𝑋 paths with 𝑓(0) = 𝑔(0) and 𝑔(1) = 𝑔(1). 𝑓  and 𝑔
are path homotopic if there exists a homotopy

𝐻 : 𝐼 × 𝐼 ⟶ 𝑋

from 𝑓  to 𝑔 such that for all 𝑡 ∈ 𝐼 ,

𝐻(0, 𝑡) = 𝑓(0) = 𝑔(0)
𝐻(1, 𝑡) = 𝑓(1) = 𝑔(1)

denoted

𝑓 ≃𝑝 𝑔

which is an equivalence relation on paths in 𝑋. And

[𝑓] : {𝑔 | 𝑔 a path in 𝑋 with 𝑔 ≃𝑝 𝑓}

is the path homotopy class of 𝑓 .

Proposition . Suppose 𝑓(1) = 𝑔(0), if 𝑓 ′ ≃𝑝 𝑓  and 𝑔′ ≃𝑝 𝑔, then 𝑓 ′ ∗ 𝑔′ ≃𝑝 𝑓 ∗ 𝑔.

proof. Choose path homotopy

𝐹 : 𝐼 × 𝐼 ⟶ 𝑋 from 𝑓 ′ to 𝑓 𝐺 : 𝐼 × 𝐼 ⟶ 𝑋 from 𝑔′ to 𝑔

then we can define a path homotopy from 𝑓 ′ ∗ 𝑔′ to 𝑓 ∗ 𝑔:

(𝐹 ∗ 𝐺)(𝑠, 𝑡) ≔ {
𝐹(2𝑠, 𝑡) if 𝑠 ∈ [0, 1

2]
𝐺(2𝑠 − 1, 𝑡) if 𝑠 ∈ [1

2 , 1]

□
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Definition (Loop) . Let (𝑋, 𝑥0) be pointed space. A loop in 𝑋 based at 𝑥0 is a path

𝑓 : 𝐼 ⟶ 𝑋

such that 𝑓(0) = 𝑓(1) = 𝑥0

Note .

{loops 𝑓 : 𝐼 ⟶ 𝑋 based at 𝑥0} ⟷
1:1

{continuous map 𝑓 : ( 𝐼
𝜕𝐼

, 𝜕𝐼
𝜕𝐼

) → (𝑥, 𝑥0)}

Definition (The Fundamental Group) . The Fundamental Group of (𝑋, 𝑥0) is the set

Π1(𝑋, 𝑥0) ≔ {loops in 𝑋 based on 𝑥0}
path homotopy

= {[𝑔] | 𝑔 a loop in 𝑋 based at 𝑥0}

with concatenation of loops defines a binary operation on Π1(𝑋, 𝑥0):

∀[𝑓], [𝑔] ∈ Π1(𝑋, 𝑥0). [𝑓] ∗ [𝑔] ≔ [𝑓 ∗ 𝑔]

Theorem . Π1(𝑋, 𝑥0) is a group with this operation.

proof.

1. ∗ is associative

Let [𝑓], [𝑔], [ℎ] ∈ Π1(𝑋, 𝑥0). WTS:

(𝑓 ∗ 𝑔) ∗ ℎ ≃𝑝 𝑓 ∗ (𝑔 ∗ ℎ)

[0, 1] = [𝑓, 𝑔, ℎ, ℎ] [𝑓, 𝑓, 𝑔, ℎ]

then

(𝑓 ∗ 𝑔) ∗ ℎ = (𝑓 ∗ (𝑔 ∗ ℎ)) ∘ 𝑘

where 𝑘 : [0, 1] → [0, 1] is the PL homeomorphism given by

[0, 1
4
] ⟶ [0, 1

2
]

[1
4
, 1
2
] ⟶ [1

2
, 3
4
]

[1
2
, 1] ⟶ [3

4
, 1]

and 𝑘 ≃ id[0,1] via a homotopy that fixes 0 and 1, e.g.

𝑘𝑡(𝑠) ≔ (1 − 𝑡)𝑘(𝑠) + 𝑡𝑠
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follows that

(𝑓 ∗ 𝑔) ∗ ℎ ≃𝑝 (𝑓 ∗ (𝑔 ∗ ℎ)) ∘ id[0,1]

= 𝑓 ∗ (𝑔 ∗ ℎ)

2. Π1 has an identify element

Let 𝑒𝑥0
: 𝐼 → 𝑋 be the constant path given by

∀𝑠 ∈ 𝐼. 𝑒𝑥0
(𝑠) ≔ 𝑥0

Claim . ∀[𝑓] ∈ Π1(𝑋, 𝑥0). 𝑓 ∗ 𝑒𝑥0
≃𝑜 𝑓 ≃𝑝 𝑒𝑥0

∗ 𝑓

proof. Construct

𝐻(𝑠, 𝑡) ≔ {
𝑥0 if 𝑡 ≤ 2𝑠 − 1
𝑓(2 𝑠

𝑡+1) if 𝑡 ≥ 2𝑠 − 1

□

3. Π1 has a inverses

Let [𝑓] ∈ Π1(𝑋, 𝑥0) and

∀𝑠 ∈ 𝐼. 𝑓(𝑠) ≔ 𝑓(1 − 𝑠)

Claim . 𝑓 ∗ 𝑓 ≃𝑝 𝑒𝑥0
≃𝑝 𝑓 ∗ 𝑓

proof. Construct

𝐻(𝑠, 𝑡) ≔ {
𝑓(2𝑠(1 − 𝑡)) if 𝑠 ≤ 1

2
𝑓((2𝑠 − 1)(1 − 𝑡) + 𝑡) if 𝑠 ≥ 1

2

is a path homotopy from 𝑓 ∗ 𝑓  to 𝑒𝑥0
. Similarly can construct one from 𝑓 ∗ 𝑓  to 𝑒𝑥0

. □

Therefore Π1(𝑋, 𝑥0) forms a group. □

Theorem (Induced Maps) . Let 𝑓 : (𝑋, 𝑥0) ⟶ (𝑌 , 𝑦0) be a continuous map with 𝑓(𝑥0) = 𝑦0.
The induced map is

𝑓∗ : Π1(𝑋, 𝑥0) ⟶ Π1(𝑌 , 𝑦0)
[𝑝] ⟼ [𝑓 ∘ 𝑝]

such that
1. 𝑓∗ is well-defined
2. 𝑓∗ is a group homomorphism:

𝑓∗([𝑝][𝑞]) = 𝑓∗([𝑝])𝑓∗([𝑞])
3. (idΠ1(𝑋,𝑥0))∗

= idΠ1(𝑋,𝑥0)

4. (𝑓 ∘ 𝑔)∗ = 𝑓∗ ∘ 𝑔∗
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proof.

1. If 𝐻 : 𝐼 × 𝐼 ⟶ 𝑋 is a path homotopy between 𝑝0 and 𝑝1, then 𝑓 ∘ 𝐻 : 𝐼 × 𝐼 ⟶ 𝑌  is a path
homotopy between 𝑓 ∘ 𝑝0 and 𝑓 ∘ 𝑝1, that is, [𝑓 ∘ 𝑝] depends only on the path homotopy class
[𝑝].

2. Let [𝑝], [𝑞] ∈ Π1(𝑋, 𝑥0), then

(𝑓 ∘ (𝑝 ∗ 𝑞))(𝑠) = 𝑓((𝑝 ∗ 𝑞)(𝑠))

= {
𝑓(𝑝(2𝑠)) if 𝑠 ∈ [0, 1

2]
𝑓(𝑞(2𝑠 − 1)) if 𝑠 ∈ [1

2 , 1]

= ((𝑓 ∘ 𝑝) ∗ (𝑓 ∘ 𝑞))(𝑠)
⟹ 𝑓 ∘ (𝑝 ∗ 𝑞) = (𝑓 ∘ 𝑝) ∗ (𝑓 ∘ 𝑞)
⟹ 𝑓∗([𝑝][𝑞]) = 𝑓∗([𝑝])𝑓∗([𝑞])

3. Follows from the definition

4. (𝑓 ∘ 𝑔)∗([𝑝]) = [(𝑓 ∘ 𝑔) ∘ 𝑝] = [𝑓 ∘ (𝑔 ∘ 𝑝)]
= 𝑓∗([𝑔 ∘ 𝑝]) = 𝑓∗(𝑔∗([𝑝]))
= (𝑓∗ ∘ 𝑔∗)([𝑝])

⟹ (𝑓 ∘ 𝑔)∗ = 𝑓∗ ∘ 𝑔∗

□

Remark . Homeomorphic pointed spaces have isomorphic fundamental groups.

Corollary . If 𝑓  is a homeomorphism, then 𝑓∗ is group isomorphism.

proof.

𝑓 : (𝑋, 𝑥0) → (𝑌 , 𝑦0) homeo

⟹ 𝑓−1 : (𝑌 , 𝑦0) → (𝑋, 𝑥0)

(𝑓−1)
∗
∘ 𝑓∗ = (𝑓−1 ∘ 𝑓)

∗
= (id𝑋,𝑥0

)
∗

= idΠ1(𝑋,𝑥0)

𝑓∗ ∘ (𝑓−1)
∗

= (𝑓 ∘ 𝑓−1)
∗

= (id𝑌 ,𝑦0
)

∗
= idΠ1(𝑌 ,𝑦0)

hence 𝑓∗ and (𝑓−1)
∗
 are inverse of each other, and the isomorphism class of Π1(𝑋, 𝑥0) is a

topological invariant for pointed spaces. □

Example . Π1(ℝ𝑛, 𝑥0) = {[𝑒𝑥0
]}

Reason: Any loop 𝑓 : [0, 1] → ℝ𝑛 based at 𝑥0 ∈ ℝ𝑛 is path homotopic to 𝑒𝑥0
 via “Straight line

homotopy”:

𝑓𝑡(𝑠) ≔ (1 − 𝑡)𝑓(𝑠) + 𝑡𝑥0

Example . 𝑋 ⊆ ℝ𝑛 convex, 𝑥0 ∈ 𝑋, then Π1(𝑋, 𝑥0) = {[𝑒𝑥0
]}, proof same as before.
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Definition (Simply connected) . X is simply connected if it is path connected and

∀𝑥0 ∈ 𝑋. Π1(𝑋, 𝑥0) = {[𝑒]}

and is independent of the choice of 𝑥0 since 𝑥 is path connected.

Remark . Any convex subspace of ℝ𝑛 is simply connected.

Example . Π1(𝑆1, 𝑥0) ≅ (ℤ, +)

Specifically, let 𝜔𝑛 : [0, 1] ⟶ 𝑆1 be the loop

𝜔𝑛(𝑠) ≔ 𝑒2𝜋𝑖𝑛𝑆

when 𝑛 > 0, 𝜔𝑛 turns counterclockwise for 𝑛 loops; when 𝑛 < 0, 𝜔𝑛 turns clockwise for −𝑛 loops.
Then the map

ℤ ⟶ Π1(𝑆1, 1)
𝑛 ⟼ [𝜔𝑛]

is an isomorphism.

Theorem . Π1(𝑋 × 𝑌 , (𝑥0, 𝑦0)) ≅ Π1(𝑋, 𝑥0) × Π1(𝑌 , 𝑦0)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Direct product of group with

component-wise multiplication

proof. Let 𝑝𝑋 : 𝑋 × 𝑌 → 𝑋, 𝑝𝑌 : 𝑋 × 𝑌 → 𝑌  be the projections. Then the isomorphism

Π1(𝑋 × 𝑌 , (𝑥0, 𝑦0)) ⟶ Π1(𝑋, 𝑥0) × Π1(𝑌 , 𝑦0)

is given by

[𝑓] ⟼ ((𝑝𝑋)∗([𝑓]), (𝑝𝑌 )∗([𝑓]))

inverse:

([𝑓1], [𝑓2]) ⟼ [(𝑓1, 𝑓2)]

□

Example . Π1(𝑇 ) = Π1(𝑆1 × 𝑆1) ≅ Π1(𝑆1) × Π1(𝑆1) = ℤ × ℤ ≅ ℤ2

Theorem . Π1(𝑆𝑛, 𝑥0) = {𝑒} for 𝑛 ≥ 2

proof.

Lemma . For 𝑛 ≥ 2, every loop 𝑝 in 𝑆𝑛 based at 𝑥0 ∈ 𝑆𝑛 is path homotopic to a loop 𝑞 that
misses −𝑥0, the antipode of 𝑥0.
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proof. Let 𝑝 : [0, 1] ⟶ 𝑆𝑛 be a loop based at 𝑥0 and assume WLOG that 𝑥0 = (0, …, 0, 1) ∈
𝑆𝑛, the north pole, and 𝑥0 = (0, …, 0, −1) ∈ 𝑆𝑛, the south pole. Let the open south hemi-
sphere be

𝑉 ≔ 𝑆𝑛 ∩ (ℝ𝑛 × (−∞, 0))

and

𝑈 ≔ 𝑝−1(𝑉 ) ⊆ [0, 1]

so 𝑈  is an open subset of (0, 1) ⊆ [0, 1] and 𝑈 ⊇ 𝑝−1(−𝑥0), follows that 𝑈  is a countable union
of disjoint open intervals 𝐼𝛼 ⊆ [0, 1]. The 𝐼𝛼 form an open cover for 𝑝−1(−𝑥0), so it’s closed
and compact, meaning there exist a finite subcover

{𝐼𝛼1
, …, 𝐼𝛼𝑘

}

since the 𝐼𝛼 are disjoint, none of the 𝐼𝛼 where 𝛼 ≠ 𝛼1, …, 𝛼𝑘 contain points of 𝑝−1(−𝑥0),
hence

−𝑥0 ∉ 𝑝([0, 1] ∖ ⋃
𝑘

𝑖=1
𝐼𝛼𝑖

)

it’s enough to show that each 𝑝|𝐼𝛼𝑖
 is path-homotopic to a path 𝑞𝑖 that misses −𝑥0. Let 𝐼 ≔

𝐼𝛼𝑖
 for some 𝑖 and write

𝐼 = (𝑎, 𝑏) for 0 < 𝑎 < 𝑏 < 1

then

𝑝(𝐼) = 𝑝([𝑎, 𝑏]) ⊆ 𝑝((𝑎, 𝑏)) = 𝑝(𝐼)

⊆ 𝑉
⟹ 𝑝(𝑎), 𝑝(𝑏) ∈ 𝜕𝑉 = 𝑆𝑛−1 = 𝑆𝑛 ∩ (ℝ𝑛 × {0})

after applying a homeomorphism, we can regard 𝑝|[𝑎,𝑏] as a path in

𝐷𝑛 ≅ 𝑉

with endpoints in 𝜕𝐷𝑛 = 𝑆𝑛−1. Moreover, since 𝑛 > 2, 𝑆𝑛−1 is path connected, there exists
a path 𝑞𝑖 in 𝜕𝐷𝑛 = 𝑆𝑛−1 from 𝑝(𝑎) to 𝑝(𝑏). Finally, 𝑞𝑖 ≃𝑝 𝑝|[𝑎,𝑏] via a straightline homotopy
in the convex set 𝐷𝑛 ⊆ ℝ𝑛 and 𝑞𝑖 misses the point 0 ∈ 𝐷𝑛, which corresponds to the point
𝑥0 ∈ 𝑉 ≅ 𝐷𝑛. □

Let [𝑝] ∈ Π1(𝑆𝑛, 𝑥0) for 𝑛 ≥ 𝑧. By lemma, we can assume

im(𝑝) ⊆ 𝑆𝑛 = {−𝑥0} ≅ ℝ𝑛

then 𝑝 ≃𝑝 𝑒𝑥0
, meaning [𝑝] = [𝑒𝑥0

] and

Π1(𝑆𝑛, 𝑥0) = {[𝑒𝑥0
]}

□
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Remark . 𝑆𝑛 is simply connected if 𝑛 ≥ 2.

Fact (Poincaré Conjecture; shown by Perelman) . Every closed simply-connected 3-manifold
𝑀 ≠ ∅ is isomorphic to 𝑆3.

Also true for 2-manifolds:

Fact . Every closed simply-connected 2-manifold 𝑀 ≠ ∅ is isomorphic to 𝑆2.

But not true for n-manifolds with 𝑛 ≥ 4.

Example . 𝑆2 × 𝑆2 is simply-connected, but not homeomorphic to 𝑆4.

3.2 Fundamental Group of 𝑆1

Theorem . For 𝑛 ∈ ℤ, let

𝜔𝑛 : [0, 1] ⟶ 𝑆1

𝑠 ⟼ 𝑒2𝜋𝑖𝑛𝑠

Then

Φ : ℤ ⟶ Π1(𝑆)
𝑛 ⟼ [𝜔𝑛]

is a group isomorphism.

proof. First show that Φ is a homomorphism. NTS: Φ(𝑚 + 𝑛) = Φ(𝑚) + Φ(𝑛) or [𝜔𝑚+𝑛] =
[𝜔𝑚 ∗ 𝑤𝑛]. Note that

𝜔𝑚+𝑛(𝑠) = 𝑒2𝜋𝑖(𝑚+𝑛)𝑠

𝜔𝑚(𝑠) = 𝑒2𝜋𝑖𝑚𝑠

𝜔𝑛(𝑠) = 𝑒2𝜋𝑖𝑛𝑠 = 𝑒2𝜋𝑖(𝑚+𝑛𝑠)

define

𝜃 : [0, 1] ⟶ ℝ

𝑠 ⟼ {
2𝑠𝑚 if 𝑠 ≤ 1

2
𝑚 + (2𝑠 − 1) if 𝑠 ≥ 1

2

then 𝜃 is a continuous path in ℝ from 0 to 𝑚 + 𝑛 and

(𝜔𝑚 ∗ 𝜔𝑛)(𝑠) = 𝑒2𝜋𝑖𝜃(𝑠)

Now prove that Φ(𝑛) ≔ [𝜔𝑛] is a bijection:
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Let

𝑞 : ℝ ⟶ 𝑆1

𝑠 ⟼ 𝑒2𝜋𝑖𝑠

Fact . 𝑞 is a covering map

Definition . Given a continuous map 𝑓 : 𝑌 → 𝑆1. A lift of 𝑓  through 𝑞 is a continuous map
𝑓 : 𝑌 ⟶ ℝ such that 𝑞 ∘ 𝑓 = 𝑓 . The diagram

↑
𝑓

↑

𝑞
↑𝑓

↑

ℝ 𝑠

𝑌 𝑆1 𝑒2𝜋𝑖𝑠

Commutes.

Example . 𝜔𝑛(𝑠) = 𝑒2𝜋𝑖𝑠 = 𝑞(𝑛𝑠) ∈ 𝑆1, then 𝜔𝑛(𝑠) ≔ 𝑛𝑠 ∈ ℝ is a lift of 𝜔𝑛 through 𝑞 : ℝ ⟶ 𝑆1.

Lemma (Unique Path Lifting Property, UPLP) . If 𝑝 : 𝐼 → 𝑆1 is a path and 𝑥0 ∈ 𝑞−1(𝑝(0)),
then there exists a unique lift 𝑝 : 𝐼 → ℝ of 𝑝 through 𝑞 such that 𝑝(0) = 𝑥0.

proof. 𝑞 : ℝ → 𝑆1 given by 𝑞(𝑠) ≔ 𝑒2𝜋𝑖𝑠, 𝑝 : [0, 1] → 𝑆1 path with 𝑥0 ≔ 𝑝(0), 𝑥0 ∈ 𝑞−1(𝑥0).
WTS: there exists a unique path 𝑝 : [0, 1] → ℝ such that 𝑝(0) = 𝑥0 and 𝑞 ∘ 𝑝 = 𝑝. Assume
WLOG that 𝑥0 = 1 ∈ 𝑆1. Then 𝑞−1(𝑥0) = 𝑞−1(1) = ℤ ⊆ ℝ. Can assume WLOG that 𝑥0 ≔ 0 ∈
ℝ. Write

𝑆1 = 𝑈 ∪ 𝑉

where 𝑈 = 𝑆1 ∖ {1} and 𝑉 = 𝑆1 ∖ {−1}, then

𝑞−1(𝑈) = ℝ ∖ 𝑞−1(1) = ℝ ∖ ℤ = ⨆
𝑘∈ℤ

(𝑘, 𝑘 + 1)

𝑞−1(𝑉 ) = ℝ ∖ 𝑞−1(−1) = ℝ ∖ 1
2

+ ℤ = ⨆
𝑘∈ℤ

(𝑘 − 1
2
, 𝑘 + 1

2
)

Now let 𝑝 : [0, 1] ⟶ 𝑆1 be a path with 𝑝(0) = 1 ≕ 𝑥0. Then 𝑝−1(𝑈) ∪ 𝑝−1(𝑉 ) is an open cover
of [0, 1], which has Lebesgue number 𝛿 > 0 for this cover. If we choose 𝑛 > 1

𝛿  then for 𝑖 =
1, …, 𝑛, each [ 𝑖−1

𝑛 , 1
𝑛] is in 𝑝−1(𝑈) and in 𝑝−1(𝑉 ). 𝑝 maps each [ 𝑖−1

𝑛 , 1
𝑛] to 𝑈  or 𝑉  or both, we

will show that
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∀𝑖 = 0, …, 𝑛. ∃ a unique lift 𝑝𝑖 of 𝑝|[0, 𝑖
𝑛]. 𝑝(0) = 0 ∈ ℝ

induct on 𝑖:
• 𝑖 = 0: Define 𝑝0(0) ≔ 0 ∈ ℝ
• 𝑖 > 0: Assume we have already constructed the lift 𝑝𝑖−1 of 𝑝|[0,𝑖−1

𝑛 ]. By construction,

𝑝([𝑖 − 1
𝑛

, 𝑖
𝑛

]) ⊆ 𝑈 or ⊆ 𝑉

for simplicity, assume

𝑝([𝑖 − 1
𝑛

, 𝑖
𝑛

]) ⊆ 𝑈

let 𝑘 ∈ ℤ be such that

𝑝𝑖−1(
𝑖 − 1

𝑛
) ∈ (𝑘, 𝑘 + 1) ⊆ 𝑞−1(𝑈)

Note: 𝑞 restricts to homeomorphism (𝑘, 𝑘 + 1) → 𝑈  so we can define

𝑝𝑖 ≔
{{
{
{{𝑝𝑖−1 on [0, 𝑖−1

𝑛 ]

(𝑞|(𝑘,𝑘+1))
−1

∘ 𝑝|[𝑖−1
𝑛 , 1

𝑛] on [ 𝑖−1
𝑛 , 𝑖

𝑛]

Easy to see: 𝑝𝑖 is continuous and

𝑞 ∘ 𝑝𝑖 = 𝑝|[0, 𝑖
𝑛]

then 𝑝𝑖 is a lift of 𝑝|[0, 𝑖
𝑛] through 𝑞.

Uniqueness: Suppose 𝑝𝑖 is another lift of 𝑝|[0, 𝑖
𝑛]:

• On [0, 𝑖−1
𝑛 ], induction implies 𝑝𝑖 = 𝑝𝑖

• On [ 𝑖−1
𝑛 , 𝑖

𝑛], the lifting property implies

𝑞 ∘ 𝑝𝑖 = 𝑞 ∘ 𝑝𝑖

Moreover, 𝑝𝑖 and 𝑝𝑖 both map [ 𝑖−1
𝑛 , 𝑖

𝑛] to (𝑘, 𝑘 + 1) (can be seen since they agree at 𝑖−1
𝑛

and since 𝑝𝑖 must map [ 𝑖−1
𝑛 , 𝑖

𝑛] to a path components of 𝑞−1(𝑈), follows that 𝑝𝑖 = 𝑝𝑖 on
[ 𝑖−1

𝑛 , 𝑖
𝑛] because 𝑞 is injective on (𝑘, 𝑘 + 1).

□

Lemma (Path Homotopy Lifting Property, PHLP) . If 𝐻 : 𝐼 × 𝐼 → 𝑆1 is a homotopy and 𝐻0
is a lift through 𝑞 of 𝐻|𝐼×{0}, then there exists a lift 𝐻̃ of 𝐻 through 𝑞 such that 𝐻̃|𝐼×{0} =
𝐻0. Moreover, if 𝐻 is a path homotopy, so is 𝐻̃.

proof. WTS: There exists a lift 𝐻̃ : 𝐼 × 𝑋 → ℝ of 𝐻 extending 𝐻0. To define 𝐻̃, divide 𝐼 ×
𝐼  into squares of the form

𝐼𝑖𝑗 ≔ [𝑖 − 1
𝑛

, 𝑖
𝑛

] × [𝑗 − 1
𝑛

, 𝑗
𝑛

]
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where 𝑛 is large enough so that each 𝐻(𝐼𝑖𝑗) is in 𝑈  or in 𝑉 . For each 𝑖 = 1, …, 𝑛, use a local
inverse of 𝑞 : ℝ → 𝑆1 to extend the given lift 𝐻0 to lift 𝐻𝑖,1 of 𝐻|𝐼𝑖,1

.
Note: 𝐼𝑖,1 ∩ 𝐼𝑖+1,1 = {𝑖} × [0, 1

𝑛] ≅ [0, 1]
⟹ 𝐻𝑖,𝑗, 𝐻𝑖+1,𝑗 must agree on 𝐼𝑖,1 ∩ 𝐼𝑖+1,1 by the UPLP.
⟹ By the piecing lemma, we obtain a well-defined lift of 𝐻|𝐼×[0, 1

𝑛]. Now proceed inductively
to fill up the square, get a lift 𝐻̃ of 𝐻.

Exercise: If 𝐻 is a path homotopy, then so is 𝐻̃. □

Remark . Given
• path 𝑝0, 𝑝1 in 𝑆1 with 𝑝0 ≃𝑝 𝑝0
• lifts 𝑝0, 𝑝1 through 𝑞 with 𝑝0(0) = 𝑝1(0)

Then 𝑝0 ≃𝑝 𝑝1. In particular, 𝑝0(1) = 𝑝1(1).

Now suppose Φ(𝑚) = Φ(𝑛)

⟹ [𝜔𝑚] = [𝜔𝑛]
⟹ 𝜔𝑚 ≃𝑝 𝜔𝑛
⟹ By “PHLP” 𝜔𝑚 ≃𝑝 𝜔𝑛 where 𝜔𝑚(𝑠) = 𝑚𝑠, 𝜔𝑛(𝑠) = 𝑛𝑠
⟹ 𝜔𝑚(1) = 𝜔𝑛(1)
⟹ 𝑚 = 𝑛

so Φ is injective. Now let [𝑝] ∈ Π1(𝑆1, 1), then 𝑝 is a loop in 𝑆1 based 𝑥0 = 1 ∈ 𝑆1. Let 𝑝 : 𝐼 →
ℝ be the lift of 𝑝 staring at 𝑥0 ≔ 0 ∈ ℝ,

⟹ 𝑞 ∘ 𝑝 = 𝑝 (since 𝑝 is a lift)
⟹ 𝑞(𝑝(1)) = 𝑞−1(1) = ℤ
⟹ 𝑝(1) ∈ 𝑞−1(1) = ℤ
⟹ 𝑝(1) = 𝑛 for an integer 𝑛 ∈ ℤ
⟹ 𝑝 ∧ 𝜔𝑛 are both paths in ℝ from 0 to 𝑛
⟹ 𝐻̃(𝑠, 𝑡) ≔ (1 − 𝑡)𝑝(𝑠) + 𝑡𝜔𝑛(𝑠) ∈ ℝ is a path homotopy from 𝑝 to 𝜔𝑛
⟹ 𝑞 ∘ 𝐻̃ is a path homotopy from 𝜔𝑛
⟹ 𝑝 ≃𝑝 𝜔𝑛
⟹ [𝑝] = [𝜔𝑛] = Φ(𝑛)
⟹ [𝑝] ⊆ im(Φ(𝑛))

So Φ is surjective, hence an isomorphism. □

Fact . 𝑝 : 𝐼 ⟶ 𝑆1 path, 𝑥0 ∈ 𝑞−1(𝑝(0)), then there exists a unique lift 𝑝 : 𝐼 ⟶ ℝ of 𝑝 through
𝑞 such that 𝑝(0) = 𝑥0
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3.3 Dependence on the base point

𝑋 space, 𝑥0, 𝑥1 ∈ 𝑋 be points in same path component. Let 𝛼 : [0, 1] → 𝑋 be path from 𝑥0 to 𝑥1.
Can define a map

𝛼∗ : Π1(𝑋, 𝑥1) ⟶ Π1(𝑋, 𝑥0)
[𝑝] ⟼ [𝛼 ∗ 𝑝 ∗ 𝛼]

where 𝑝 is a loop based at 𝑥1.

Fact .
• 𝛼∗ is well-defined ([𝛼 ∗ 𝑝 ∗ 𝛼] depends only on [𝑝])
• 𝛼∗ is an isomorphism with inverse (𝛼∗)

−1 = (𝛼)∗
• If 𝛼, 𝛽 are composable paths, then (𝛼 ∗ 𝛽)∗ = 𝛼∗ ∘ 𝛽∗
• 𝛼∗ depends only on [𝛼]

So: If 𝑋 is path connected, then the isomorphism class of Π1(𝑋, 𝑥0) is independent of the
choice of 𝑥0.

Proposition . Let 𝑓, 𝑔 : 𝐴 → 𝐵 be homotopic continuous maps, with homotopy 𝐹 : 𝐴 × 𝐼 →
𝐵. For 𝑎0 ∈ 𝐴, let

𝛼(𝑡) ≔ 𝐹(𝑎0, 𝑡)

then the following commutes:

↑

𝑔∗

↑

𝑓∗

↑

𝛼∗Π𝐴,𝑔(𝑎0)

Π𝐵,𝑔(𝑏0)

Π𝐵,𝑓(𝑏0)

proof. See book, page 228. □
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3.4 Homotopy invariance of Π1

Definition (Homotopy Equivalence) . 𝑋, 𝑌  space, 𝑓 : 𝑋 → 𝑌  continuous. 𝑓  is a homotopy
equivalence if there exists a continuous map 𝑔 : 𝑌 → 𝑋 such that

𝑔 ∘ 𝑓 ≃ id𝑋 and 𝑓 ∘ 𝑔 ≃ id𝑌

In this case, 𝑔 is called a homotopy inverse of 𝑓  and 𝑋 and 𝑌  are called homotopy equiv-
alent, denoted

𝑋 ≃ 𝑌

Example . Every homeomorphism is a homotopy equivalence.

Definition (Contractible) . 𝑋 is Contractible if

𝑋 ≃ {1 point}

Easy to see:

𝑋 Contractible ⟺ id𝑋 ≃ 𝑐𝑥0

where

𝑐𝑥0
: 𝑋 ⟶ 𝑋

𝑥 ⟼ 𝑥0

Example . ℝ𝑛 is contractible because

idℝ𝑛 ≃ 𝑐0

via the homotopy

𝐻(𝑥, 𝑡) ≔ (1 − 𝑡)𝑥 where 𝑥 ∈ ℝ𝑛, 𝑡 ∈ [0, 1]

Like wise, every convex 𝐴 ⊆ ℝ𝑛 ≠ ∅ is contractible.

Example .

ℝ2 − {0} ≅ 𝑆1 × (0, ∞) ≃ 𝑆1 × {1 point} ≅ 𝑆1

Likewise

ℝ𝑛 − {0} ≃ 𝑆𝑛−1

Theorem . If 𝑓 : 𝑋 → 𝑌  is a homotopy equivalence, then

𝑓∗ : Π1(𝑋, 𝑥0) ⟶ Π1(𝑌 , 𝑓(𝑥0))

is an isomorphism for any 𝑥0 ∈ 𝑋.
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proof. Let 𝑔 : 𝑌 → 𝑋 be homotopy inverse for 𝑓 . Consider four fundamental groups:

↑𝑓∗ ↑𝑔∗ ↑𝑓 ′
∗

↑

𝛼∗

↑idΠ1
(𝑋, 𝑥0)

↑

≅ 𝛽∗

↑

idΠ1
(𝑋, 𝑓(𝑥0))

Π1(𝑋, 𝑥0) Π1(𝑋, 𝑓(𝑥0)) Π1(𝑋, 𝑔(𝑓(𝑥0))) Π1(𝑋, 𝑓(𝑔(𝑓(𝑥0))))

Π1(𝑋, 𝑥0)

Π1(𝑌 , 𝑓(𝑥0))

Then

𝑔∗ ∘ 𝑓∗ = 𝛼∗⏟
iso

⟹ 𝑔∗ injective

𝑓∗ ∘ 𝑔∗ = 𝛽∗⏟
iso

⟹ 𝑓∗ injective

𝑔∗ invertible ⟹ 𝑔∗ ∘ 𝑓∗ = 𝛼∗ ⟹ 𝑓∗ invertible

□

3.5 Degree

Definition (Degree) . 𝑓 : 𝑆1 ⟶ 𝑆1 continuous. Consider

↑𝑞|[0,1] ↑𝑓

↑

𝑓 ′ ≔ 𝑓 ∘ 𝑔|[0,1]

[0, 1] 𝑆1 𝑆1

Let 𝑓 ′ : [0, 1] → ℝ be a lift of 𝑓 ′ through 𝑔, then the degree of 𝑓  is defined by

deg(𝑓) ≔ 𝑓 ′(1) − 𝑓 ′(0)

Note . This independent of the chosen lift 𝑓 ′ of 𝑓 ′ because any two lifts differ by

𝑓 ′ ↝ 𝑓 ′ + 𝑛 for 𝑛 ∈ ℤ

Proposition . if 𝑓, 𝑔 : 𝑆1 ⟶ 𝑆1 are homotopic continuous maps, then

deg(𝑓) = deg(𝑔)
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proof. Let 𝐹 : 𝑆1 × 𝐼 ⟶ 𝑆1 be a homotopy from 𝑓  and 𝑔. Define

𝐹 ′ : 𝐼 × 𝐼 ⟶ 𝑆′

by 𝐹 ′ ≔ 𝐹 ∘ (𝑔|𝐼 × id𝐼). Let 𝑓 ′ be lift of 𝑓 ′ and 𝐹 ′ be a lift of 𝐹 ′ extending 𝑓 ′.

↑𝑔′

↑𝑓 ′

↑

ℎ̃

↑

ℎ̃ + 𝑛, 𝑛 ∈ ℤ

(0, 1) (1, 1)

(0, 0) (1, 0)

By definition of degree:

deg(𝑓) = 𝐹 ′(1, 0) − 𝐹 ′(0, 0)

deg(𝑔) = 𝐹 ′(1, 1) − 𝐹 ′(0, 1)

deg(𝑓) − deg(𝑔) = 𝐹 ′(1, 0) − 𝐹 ′(0, 0) − (𝐹 ′(1, 1) − 𝐹 ′(0, 1))

= ℎ̃(0) + 𝑛 − ℎ̃(1) + 𝑛 − (ℎ̃(0) − ℎ̃(1))

= 0 ⟹ deg(𝑓) = deg(𝑔)

□

Example . Use this to show

deg(𝑓) = 𝑛 ⟺ 𝑓 ≃ the map 𝑧 ∈ 𝑆1 ⟼ 𝑧𝑛 ∈ 𝑆′

Corollary . if 𝑓, 𝑔 : 𝑆1 ⟶ 𝑆1 continuous, then

deg(𝑓 ∘ 𝑔) = deg(𝑓) deg(𝑔)

proof. Let 𝑚 ≔ deg(𝑓), 𝑛 ≔ deg(𝑔), then

𝑓 ≃ 𝑧𝑚 and 𝑔 ≃ 𝑧𝑛

𝑓 ∘ 𝑔 ≃ (𝑧𝑛)𝑚 = 𝑧𝑛𝑚

deg(𝑓 ∘ 𝑔) = 𝑛𝑚 = 𝑚𝑛 = deg(𝑓) deg(𝑔)

□

Corollary . if 𝑓 : 𝑆1 ⟶ 𝑆1 is a homomorphism, then

deg(𝑓) = ±1

in fact, if 𝑓  is orientation preserving then deg(𝑓) = 1; if 𝑓  is orientation reversing then
deg(𝑓) = −1.
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proof.

deg(𝑓) deg(𝑔) = deg(𝑓 ∘ 𝑓−1)
= deg(id𝑆1)

= deg(𝑧1)
= 1

hence deg(𝑓) ∈ ℤ𝑋 = {±1}. □

Proposition . If 𝑓 : 𝑆1 ⟶ 𝑆1 extends to a continuous map 𝐹 : 𝐷2 ⟶ 𝑆1, then

deg(𝑓) = 0

proof. Follows because in this case

𝑓 ≃ constant map ≃ (𝑧 ⟼ 𝑧0)

since 𝐷2 is contractible. □

Note . Recall that

ℝ2 − {0} ≅ 𝑆1

⟹ Π1(ℝ2 − {0}) ≅ Π1(𝑆1) ≅ ℤ

can also be see as follows:

Π1(ℝ2 − {0}) ≅ Π1(𝑆1 × (0, ∞))

≅ Π1(𝑆1) × Π1((0, ∞))

≅ Π1(𝑆1) ≅ ℤ

but Π1(ℝ𝑛 − {0}) = Π1(𝑆𝑛−1) = 0 for 𝑛 > 2

Definition . Let 𝑓 : 𝑆1 ⟶ ℝ2 − {0} be continuous, can define 𝑓 : 𝑆1 ⟶ 𝑆1 by

𝑓(𝑥) ≔ 𝑓(𝑥)
‖𝑓(𝑥)‖

can define

deg(𝑓)⏟
"winding number"

≔ deg(𝑓)

intuitively, how many times 𝑓  wind around 0.
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3.5.1. Applications

Definition (Retraction) . Let 𝑋 space, 𝐴 ⊆ 𝑋 subspace. A retraction from 𝑋 to 𝐴 is a
continuous map 𝑟 : 𝑋 ⟶ 𝐴 such that

𝑟|𝐴 = id𝐴

Theorem . There exists no retraction 𝑟 : 𝐷2 ⟶ 𝑆1.

proof. Suppose such retraction 𝑟 exists, then

deg(𝑟|𝑆1) = deg(id𝑆1) = 1

but also 𝑟|𝑆1  extends to the entire 𝐷2, namely 𝑟, so deg(𝑟|𝑆1) = 0. Contradiction. □

Theorem (Fundamental Theorem of Algebra) . Let

𝑃(𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + … + 𝑎0

be a complex polynomial with 𝑛 > 0. Then 𝑃  has a zero in ℂ.

proof. Let

𝑀 ≔ max{|𝑎0|, …, |𝑎𝑛−1|}

and choose 𝑘 ≥ 1. Then for 𝑧 ∈ 𝑘𝑆1, the circle around 0 of radius 𝑘,

𝑃(𝑧) = 𝑧𝑛(1 + 𝑎𝑛−1
𝑧

+ … + 𝑎0
𝑧𝑛 ) = 𝑧𝑛(1 + 𝑏(𝑧)) ≠ 0

where |𝑏(𝑧)| < 1
2  since 𝑧 ∈ 𝑘𝑆1. So 𝑓 ≔ 𝑃|𝑘𝑆1  is a map

𝑓 : 𝑘𝑆1 ⟶ ℂ − {0}

Moreover, 𝑓  is homotopic to 𝑧𝑛|𝑘𝑆1  via

𝐻(𝑧, 𝑡) ≔ 𝑧𝑛(1 + (1 − 𝑡)𝑏(𝑧)) ≠ 0
⟹ deg(𝑓) = deg(𝑧𝑛|𝑘𝑆1) = 𝑛 > 0

Now suppose 𝑃  has no zeroes. Then 𝑃  takes values in ℂ − {0}, so 𝑓  extends to the map

𝑃 |𝑘𝐷2 : 𝑘𝐷2 ⟶ ℂ − {0} ⟹ deg(𝑓) = 0

Contradiction. □

Remark . Suppose 0 < 𝑘1 < 𝑘2 are such that

deg(𝑃 |𝑘1𝑆1) ≠ deg(𝑃 |𝑘2𝑆1)

Then 𝑃  must have a zero in {𝑧 ∈ ℂ | 𝑘1 < |𝑧| < 𝑘2}.
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Definition . 𝑓 : 𝐼 → 𝑆1 continuous such that 𝑓(1) = −𝑓(0). Can define

deg(𝑓) ≔ 𝑓(1) − 𝑓(0) ∈ 1
2

+ ℤ

where 𝑓 : 𝐼 ⟶ ℝ is a lift of 𝑓 .

Theorem . There exists no continuous map 𝑓 : 𝑆2 → 𝑆1 such that ∀𝑥 ∈ 𝑆2. 𝑓(−𝑥) = −𝑓(𝑥)

proof. Suppose such an 𝑓  exists, then

deg(𝑓|𝑆1) = 0

since 𝑓|𝑆1  extends to the northern or southern hemisphere. But

𝑆1 = 𝐼+ ∪ 𝐼−

then

deg(𝑓|𝑆1) = deg(𝑓|𝐼+
) + deg(𝑓|𝐼−

)

= 2 deg(𝑓|𝐼+
) since 𝑓(−𝑥) = −𝑓(𝑥)

= 2(𝑛 + 1
2
)

= 2𝑛 + 1 ≠ 0

□

Theorem (Brouwer) . Every continuous map 𝑓 : 𝐷2 ⟶ 𝐷2 has a fixed point 𝑥 with 𝑓(𝑥) = 𝑥.

proof. Suppose 𝑓  has no fixed point, and define

𝑔 : 𝐷2 ⟶ 𝜕𝐷2

with 𝑔(𝑥) be the intersection of line 𝑥𝑓(𝑥), one can check 𝑔 is continuous and 𝑔|𝜕𝐷2 = id𝜕𝐷2 ,
follows that 𝑔 is a retraction from 𝐷2 to 𝜕𝐷2. By no-retraction theorem, contradiction. □

Note . Not true if 𝐷2 is replaced by 𝐷2 ∖ 𝜕𝐷2 ≅ ℝ2.

3.6 Seifert-van Kampen Theorem

Definition (Word) . Let 𝐺1, 𝐺2 be groups. A word in 𝐺1 and 𝐺2 is a finite sequence

(𝑤1, 𝑤2, …, 𝑤𝑛) where 𝑤𝑖 ∈ 𝐺1 or 𝐺2
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Definition (Free Product) . The free product of 𝐺1 and 𝐺2 is the set

𝐺1 ∗ 𝐺2 ≔ {words in 𝐺1 and 𝐺2}
∼

where ∼ is generated by:
• If 𝑤𝑖 and 𝑤𝑖+1 belong to the same group, then

(…, 𝑤𝑖, 𝑤𝑖+1, …) ∼ (…, 𝑤𝑖𝑤𝑖+1, …)
• If 𝑤𝑖 is the identity element of 𝐺1 or 𝐺2, then

(…, 𝑤𝑖−1, 𝑤𝑖, 𝑤𝑖+1, …) ∼ (…, 𝑤𝑖−1, 𝑤𝑖+1, …)

Note . 𝐺1 ∗ 𝐺2 is a group with multiplication given by concatenation.

Theorem (Univeersal Property) . Given homomorphism 𝜑𝑖 : 𝐺𝑖 ⟶ 𝐻, 𝑖 = 1, 2, there exists a
unique homomorphism

𝜑 : 𝐺1 ∗ 𝐺2 ⟶ 𝐻

that extends 𝜑1 and 𝜑2:

𝑖1 𝜑1

∃!𝜑

𝑖2 𝜑2

𝐺1

𝐺1 ∗ 𝐺2 H

𝐺1

where 𝑖𝑗(𝑤) ≔ [(𝑤)], 𝑤 ∈ 𝐺𝑗.

Example .

𝐹𝐾 ≔ ℤ ∗ ℤ ∗ ⋯ ∗ ℤ⏟⏟⏟⏟⏟
𝑘<∞

= ℤ∗𝑘

is a free group on 𝑘 generators.
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Proposition . Any group 𝐻 with 𝑘 < ∞ generators can be written as

𝐻 ≅ 𝐹𝑘
𝑁

for a normal subgroup 𝑁 ⊴ 𝐹𝑘.

proof. Let ℎ1, …, ℎ𝑘 be generators of 𝐻, and define

Φ𝑖 : ℤ ⟶ 𝐻

𝑛 ⟼ (ℎ𝑖)
𝑛

The Φ𝑖 induce a surjective map 𝜑 : ℤ∗𝑘 ⟶ 𝐻. Define 𝑁 ≔ ker(𝜑), then

𝐻 ≅ ℤ∗𝑘

ker(𝜑)
= 𝐹𝑘

𝑁

□

Remark . 𝑁  is the set of relations.

Definition (Group Presentation) . If 𝐻 is finitely generators ℎ1, …, ℎ𝑗, then

𝐻 ≅ ⟨ℎ1, …, ℎ𝑘 | 𝑁⟩

If 𝑁  is also finitely generated as a normal subgroup of 𝐹𝑘 by elements 𝑟1, …, 𝑟𝑙, then write

𝐻 ≅ ⟨ℎ1, …, ℎ𝑘 | 𝑟1, …, 𝑟𝑘⟩

In this case, 𝐻 is finitely presented.

Note . Iff 𝑘1 ≠ 𝑘2, then

𝐹𝑘1
≇ 𝐹𝑘2

proof. Follows because the abelianizations of 𝐹𝑘1
 and 𝐹𝑘2

 are ℤ𝑘1  and ℤ𝑘2  and

ℤ𝑘1 ≇ ℤ𝑘2

□

Theorem (Seifert-van Kampen) . Let 𝑋 be space, 𝑋 = 𝐴 ∪ 𝐵 where 𝐴, 𝐵 ⊆ 𝑋 are open and
𝐴 ∩ 𝐵 is path-connected. Pick 𝑥0 ∈ 𝐴 ∩ 𝐵 and consider

𝜓𝐵

𝜓𝐴

𝜑𝐴
𝜑𝐵

Π1(𝐴 ∩ 𝐵, 𝑥0) Π1(𝐴, 𝑥0)

Π1(𝐵, 𝑥0) Π1(𝑋, 𝑥0)
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Where all maps are induced by inclusions. Then the homeomorphism equation

𝜑 : Π1(𝐴, 𝑥0) ∗ Π1(𝐵, 𝑥0) ⟶ Π1(𝑋, 𝑥0)

induced by 𝜑𝐴 and 𝜑𝐵 is surjective and

ker(𝜑) =
{{
{
{{the smallest normal subgroup

containing all 𝜓𝐴(𝛾)𝜓𝐵(𝛾)−1

for all 𝛾 ∈ Π1(𝐴 ∩ 𝐵, 𝑥0) }}
}
}}

Note . So:

Π1(𝑋, 𝑥0) ≅ Π1(𝐴, 𝑥0) ∗ Π1(𝐵, 𝑥0)
(∀𝛾 ∈ Π1(𝐴 ∩ 𝐵, 𝑥0)𝜓𝐴(𝛾) = 𝜓𝐵(𝛾).

Special cases:
1. 𝑋, 𝐴, 𝐵 as before. If 𝐴 ∩ 𝐵 is simply connected, then

Π1(𝑋, 𝑥0) ≅ Π1(𝐴, 𝑥0) ∗ Π1(𝐵, 𝑥0)

Application

(𝑋, 𝑥0), (𝑌 , 𝑦0) pointed spaces, then the “wedge sum” of 𝑋 and 𝑌

𝑋 ∨ 𝑌 ≔ 𝑋 ⊔ 𝑌
𝑥0 ∼ 𝑦0

Let 𝑧0 ≔ 𝑥0 = 𝑦0 ∈ 𝑋 ∨ 𝑌  and suppose:
• 𝑥0, 𝑦0 are closed in 𝑋, 𝑌 , respectively
• 𝑥0, 𝑦9 have open neighborhoods in 𝑋, 𝑌 , respectively, which deformation retract to 𝑥0, 𝑦0, then

Π(𝑋 ∨ 𝑌 , 𝑧0) ≅ Π1(𝑋, 𝑥0) ∗ Π1(𝑌 , 𝑦0)

Definition (Deformation retraction) . A deformation retraction of 𝑋 to 𝐴 ⊆ 𝑋 is a homotopy

𝐻 : 𝑋 × 𝑋 ⟶ 𝑋

such that
• ∀𝑥 ∈ 𝑋. 𝐻(𝑥, 0) = 𝑥
• ∀𝑥 ∈ 𝑋. 𝐻(𝑥, 1) ∈ 𝐴
• ∀𝑥 ∈ 𝐴. ∀𝑡 ∈ 𝐼. 𝐻(𝑥, 𝑡) = 𝑥

Example .
• Π1(𝑆1 ∨ 𝑆1) ≅ ℤ ∗ ℤ. More generally:

Π1(𝑆1 ∨ 𝑆1 ∨ … ∨ 𝑆1) ≅ ℤ∗𝑘 = 𝐹𝑘

• 𝑋, 𝐴, 𝐵 as in SvK. If 𝐴 and 𝐵 are simply connected, then so is 𝑋. Follows because

Π1(𝑋, 𝑥0) ≅ Π1(𝐴, 𝑥0) ∗ Π1(𝐵, 𝑥0)
…

= 0 ∗ 0 = 0
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can be used to show that Π1(𝑆𝑛) = 0 for 𝑛 > 1.
• 𝑋, 𝐴, 𝐵 as in SvK, and Π1(𝐵, 𝑥0) = 0. Then

Π1(𝑋, 𝑥0) ≅ Π1(𝐴, 𝑥0)
𝑁

where 𝑁  is the normal subgroup generated by the image of

𝜓𝐴 : Π1(𝐴 ∩ 𝐵, 𝑥0) ⟶ Π1(𝐴, 𝑥0)

Example . 𝑋 = 𝑃 = 𝑀 ∪ 𝐷2. 𝐴 = nbhd(𝑀) ⊆ 𝑃  and 𝐵 = nbhd(𝐷2) ⊆ 𝑃 , then Π1(𝐵, 𝑥0) = 0.
Follows

Π𝑋 = Π1(𝑀)
Π1(𝜕𝑀)

= ℤ⟨𝛾⟩
2𝛾 = 0

= ℤ
2ℤ

3.7 Fundatmental groups of surfaces

3.7.1. Surfaces with 𝜕𝑀 ≠ ∅
Claim .

Π1(𝑇 (𝑔)
(1) ) ≅ ℤ2𝑔 = 𝐹2𝑔

Π1(𝑃 (ℎ)
(1) ) ≅ ℤℎ = 𝐹ℎ

proof. Start with a closed surface 𝑀 = 𝑇 (𝑔) or 𝑀 = 𝑃 (𝑘) and realize it as a polygon with
identified edges. Poke a hold in the middle of the polygon to get 𝑀(1). The result is homotopic to

𝑆1 ∪ … ∪ 𝑆1⏟⏟⏟⏟⏟
𝑘

where 𝑘 = 2𝑔 or 𝑘 = ℎ

Example .

□
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3.7.2. Surface without boundary
Ley 𝑀  be closed connected surface. Poke a hold and put it back in.

𝑀 = 𝐴 ∪ 𝐵 where 𝐴 = nbhd(𝑀(1)) and 𝐵 = nbhd(𝐷2)

follows that

Π1(𝑀) ≅ Π1(𝑀(1)) ∗
= 0

⏞Π1(𝐷2)

=
Π1(𝑀(1))

Π1(𝜕𝑀(1))
= 𝐹𝑘

𝑁

where 𝑁  is generated by the image in Π1(𝑀(1)) of Π1(𝜕𝑀(1)).

𝑀 = 𝑇 (𝑔)

Π1(𝑀) = ⟨𝑎1, 𝑏1, …, 𝑎𝑔, 𝑏𝑔 | ∑
𝑔

𝑖=1
[𝑎𝑖, 𝑏𝑖]⟩

where [𝑎𝑖, 𝑏𝑖] = 𝑎𝑖𝑏𝑖𝑎−1
𝑖 𝑏−1

𝑖  be the commutator.

𝑀𝑃 (ℎ)

Π1(𝑀) = ⟨𝑎1, …, 𝑎𝑛 | 𝑎12
1
𝑎2

2…𝑎2
𝑛⟩

Definition (Abelianization Π1) . Let (𝑋, 𝑥0) path connected.

Π1(𝑋, 𝑥0)ab ≔ Π1(𝑋, 𝑥0)
𝑁

where 𝑁  is the group generated by all commutators.

Definition (First Betti Number) . Suppose 𝑋 is path connected and 𝑥0 ∈ 𝑋, Π(𝑋, 𝑥0)ab has
finite rank, then the first Betti number of 𝑋 is

𝑏1(𝑋) ≔ rank Π1(𝑋, 𝑥0)ab

Theorem . 𝑀  a connected 2-dim handlebody with 𝜕𝑀 ≠ 𝜑, then

𝑋(𝑀) = 1 − 𝑏1(𝑀)

can be shown without using that 𝑋(𝑀) is a topo invariant.

85


	Basic Point Set Topology
	Real
	Metric Spaces
	Topological spaces
	Summary
	Bases for topologies
	Continuity
	Closure and Interior
	Homeomorphisms
	Linear and affine maps
	Topological Properties
	Separation Properties

	Compactness
	Compactness in ℝ
	Product Topology and compactness in ℝn
	Lebesgue number lemma
	Connectness
	Connectness in ℝ
	Application

	Path Connectness
	Construction of quotient spaces
	Disjoint Union and gluing
	Simply connected space
	Jordan Curve Theorem and Schoenflies Theorem
	Situation in higher dimensions

	Local flatness and collar neighborhoods

	The classification of surfaces
	Manifolds
	Invariance of domain
	Surfaces with boundary
	Isotopies
	Homeomorphisms of I = [0, 1]
	Homeomorphism of S1

	Handle Slides
	Orientations

	The Fundamental Group
	Homotopies
	Fundamental Group of S1
	Dependence on the base point
	Homotopy invariance of Π1
	Degree
	Applications

	Seifert-van Kampen Theorem
	Fundatmental groups of surfaces
	Surfaces with ∂ M ≠ ∅
	Surface without boundary



